抽象的微生物组对宿主的健身产生了深远的影响,但是我们很难理解对宿主生态学的影响。微生物组对宿主生态学的影响已经使用两个独立框架进行了研究。经典的生态理论能力代表了预测微生物组对宿主生态学的环境依赖性的机械相互作用,但是众所周知,这些模型很难经过经验评估。另外,宿主 - 微生物组反馈理论代表了微生物组动力学对宿主健身的影响,因为简单的净效应是可与实验评估相关的简单净效应。反馈框架在理解微生物对植物生态的影响方面有了快速的进展,也可以应用于动物宿主。我们从概念上从机械模型参数方面衍生出净反馈的表达来整合这两个框架。这在网络反馈理论和经典的人群建模之间产生了一个精确的映射,从而将机械理解与实验性可持续性合并,这是建立对微生物组对宿主生态学影响的预测理解的必要步骤。
我们介绍了在高折射率的二氧化硅玻璃玻璃玻璃玻璃玻璃玻璃玻璃玻璃的整体研究中的全面研究,在不同的飞秒泵浦波长和输入极化状态下。我们首先基于与熔融二氧化硅在48 THz和75 THz的共焦拉曼显微镜基于共焦拉曼显微镜的观察结果。然后,当分别在1200 nm,1300 nm和1550 nm处泵入异常分散体时,我们演示了从700 nm到2500 nm的宽带超脑产生。相反,在1000 nm的自相度调制和光波破裂的1000 nm处泵送时,会产生较窄的SC光谱。与包括新拉曼响应的非线性schr odinger方程的数值模拟发现了一个良好的协议。我们还研究了集成波导的TE/TM极化模式对SC生成的影响。
随着对环境退化的关注,人们对过氧化氢的成本效率产生(H 2 O 2)(一种环保氧化剂)的兴趣越来越高。1 H 2 O 2是多种行业的重要化学物质,包括纺织品制造,消毒剂,半导体清洁以及油田污泥和硫化物处理。2–6此外,H 2 O 2可以是在燃料电池中产生电力的势能载体,以替代氢。7,8全球H 2 O 2市场需求在2020年为450万吨,到2027年,市场需求预计将增加到570万吨。9然而,H 2 O 2的工业生产取决于能源密集型蒽醌氧化过程(AOP),该过程需要大型基础设施,产生化学废物,并使现场H 2 O 2产生困难。10通过原子经济方法直接合成H 2 O 2
本文提供了有条件平均治疗效果(CATE)的估计和推理方法,其特征在均质横截面和单位异质动态面板数据设置中均具有高维参数。在我们的主要示例中,我们通过将基本处理变量与解释变量相互作用来对CATE进行建模。我们手术的第一个步骤是正交的,我们从结果和基础处理中分散了对照和单位效应,并采取了交叉填充的残差。此步骤使用一种新颖的通用交叉拟合方法,我们为弱依赖的时间序列和面板数据设计。这种方法在拟合滋扰时“忽略了邻居”,并且我们通过使用Strassen的耦合来理论上为其提供动力。因此,我们可以在第一个步骤中依靠任何现代的机器学习方法,只要它足够好学习残差。第二,我们构建了CATE的正交(或残留)学习者(套件),该学习者会在残留处理与解释变量的残留处理相互作用的载体上回归结果残留。如果CATE函数的复杂性比第一阶段重新调查的复杂性更简单,则正交学习者收敛速度比基于单阶段回归的学习者快。第三,我们使用demiasing对CATE函数的参数进行同时推断。当Cate低维时,我们还可以在最后两个步骤中使用普通最小二乘。在异质面板数据设置中,我们将未观察到的单位异质性建模为与Mundlak(1978)相关单位效应模型的稀疏偏差,作为时间不变的协变量的线性函数,并利用L1-元素化来估算这些模型。
我们研究了限制具有金属/铁电/夹层/Si (MFIS) 栅极堆栈结构的 n 型铁电场效应晶体管 (FeFET) 耐久性的电荷捕获现象。为了探索电荷捕获效应导致耐久性失效的物理机制,我们首先建立一个模型来模拟 n 型 Si FeFET 中的电子捕获行为。该模型基于量子力学电子隧穿理论。然后,我们使用脉冲 I d - V g 方法来测量 FeFET 上升沿和下降沿之间的阈值电压偏移。我们的模型很好地符合实验数据。通过将模型与实验数据拟合,我们得到以下结论。(i)在正工作脉冲期间,Si 衬底中的电子主要通过非弹性陷阱辅助隧穿被捕获在 FeFET 栅极堆栈的铁电 (FE) 层和夹层 (IL) 之间的界面处。 (ii) 基于我们的模型,我们可以得到在正操作脉冲期间被捕获到栅极堆栈中的电子数量。 (iii) 该模型可用于评估陷阱参数,这将有助于我们进一步了解 FeFET 的疲劳机制。
1 DARBY儿童研究所,南卡罗来纳州医科大学,美国南卡罗来纳州查尔斯顿,美国2个儿科系,南卡罗来纳州医科大学,南卡罗来纳州查尔斯顿,美国南卡罗来纳州,美国3号生物化学和分子生物学和分子生物学和霍尔林斯霍尔林斯科学系 Lomonosov莫斯科州立大学,俄罗斯,俄罗斯,5化学和物理科学系,戴森艺术与科学学院,纽约州普莱斯维尔,纽约州Pleastville,6个生物学和生物技术学院,俄罗斯莫斯科,俄罗斯莫斯科,俄罗斯莫斯科,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,高等教育学院6,生物学和生物技术学院6俄罗斯莫斯科科学院,南卡罗来纳州医科大学神经科学系8,美国南卡罗来纳州查尔斯顿,美国南卡罗来纳州医科大学9号药物发现系1 DARBY儿童研究所,南卡罗来纳州医科大学,美国南卡罗来纳州查尔斯顿,美国2个儿科系,南卡罗来纳州医科大学,南卡罗来纳州查尔斯顿,美国南卡罗来纳州,美国3号生物化学和分子生物学和分子生物学和霍尔林斯霍尔林斯科学系Lomonosov莫斯科州立大学,俄罗斯,俄罗斯,5化学和物理科学系,戴森艺术与科学学院,纽约州普莱斯维尔,纽约州Pleastville,6个生物学和生物技术学院,俄罗斯莫斯科,俄罗斯莫斯科,俄罗斯莫斯科,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,高等教育学院6,生物学和生物技术学院6俄罗斯莫斯科科学院,南卡罗来纳州医科大学神经科学系8,美国南卡罗来纳州查尔斯顿,美国南卡罗来纳州医科大学9号药物发现系
©作者2025。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/。