聚类是算法中的一个重要主题,在机器学习、计算机视觉、统计学和其他几个研究学科中有着广泛的应用。图聚类的传统目标是找到具有低电导性的聚类。这些目标不仅适用于无向图,而且无法考虑聚类之间的关系,而这对于许多应用来说可能是至关重要的。为了克服这些缺点,我们研究了有向图(有向图),其聚类彼此之间展示了更多的“结构”信息。基于有向图的 Hermitian 矩阵表示,我们提出了一种近线性时间的有向图聚类算法,并进一步表明我们提出的算法可以在合理的假设下以亚线性时间实现。我们的理论工作的意义通过对联合国商品贸易统计数据集的大量实验结果得到证明:我们算法的输出聚类不仅展示了聚类(国家集合)在进出口记录方面如何相互关联,还展示了这些聚类如何随着时间的推移而演变,这与已知的国际贸易事实一致。
功能分级的材料(FGM)是新一代的工程材料,其中微结构细节通过增强阶段的非均匀分布在空间上变化,请参见顶部图。工程师通过使用具有不同属性,大小和形状的增强件以及以连续的方式互换增强和矩阵阶段的作用(参考1)。结果是一个微观结构,该微观结构在宏观或连续尺度上产生连续或离散变化的热和机械性能。这一新的工程材料的微观结构的概念标志着材料科学和材料领域机制中革命的开始,因为它首次允许一个人将材料和结构上的考虑因素完全整合到结构组件的最终设计中。功能分级的材料是涉及严重热梯度的应用的理想候选物,从高级飞机中的热结构和
摘要。嵌入式设备上的每个加密实现都容易受到侧向通道攻击的影响。为了防止这些攻击,主要的对策包括将每个敏感变量分开并独立处理。随着旨在抵抗量子计算机及其操作复杂性的新算法的即将到来,此保护代表了一个真正的挑战。在本文中,我们提出了对保护自行车加密系统解码器免受一阶攻击的早期尝试的攻击。此外,我们还引入了一个新的程序,用于对解码器的高阶掩盖,并最新进行了最新的改进。我们还提出了整个密码系统的第一个完全掩盖的实现,包括关键生成和封装。最终,为了评估对策的正确性并启动进一步的比较,我们在C中实施了对策,并提供了其性能的基准。
摘要 - 神经退行性疾病的特征是复杂的蛋白质错误折叠的大脑内传播。例如,当前的发现突出了2种特定错误折叠蛋白在阿尔茨海默氏症中的作用,这些蛋白质被认为使用脑纤维作为高速公路传播。先前的研究通过模拟模型或基于机器学习的预测变量调查了这种扩散,这些预测因素采用大脑连接组作为基础扩散网络。但是,构造的结构连接组仅描述图中节点之间的成对连接。高阶相互作用复杂网络比正常图提供了显着的优势,因为它们可以捕获超出简单的成对关系船的交互。蛋白质错误折叠和聚集通常涉及正常图的合作行为或群体动力学,其专注于单个边缘,无法充分代表。蛋白质错误折叠的非线性和多尺度可能更适合更丰富的高阶模型。在这项研究中,我们研究了高阶网络在这种情况下是否可以提供改进的拟合和解释能力。更具体地说,我们采用淀粉样蛋白β的简单复杂传染模型来预测蛋白质错误折叠的扩散。Simplicial Cronagion复合物在2年的地平线和其他结果中,阿尔茨海默氏症患者在所有大脑区域的预测蛋白质沉积中产生了0.030的平均重建误差,胜过先前的研究,尤其是对于错误折叠的蛋白质的病例稳定增长。尽管时间范围有限,但这项研究突出了结合先进网络分析以捕获跨神经网络蛋白质聚集的复杂动力学的潜力。临床相关性 - 这项研究突出了高阶网络在阿尔茨海默氏症中提高错误折叠蛋白传播的预测的潜力,从而更好地洞悉了蛋白质聚集动力学。
光的本质或有时是显微镜的设计,在图像采集过程中引入了偏见和系统错误。取决于分析的类型,因此有必要通过产生与不同荧光团同时标记的探针和/或产生颜色交换的探针(两组交换荧光团的探针)来评估诸如色差等误差(请参阅第3.4.5节)。这比简单地对安装介质中的荧光标记的珠子进行想象更准确,因为对照和实际实验环境之间的光路相同。在基于划痕的探针的情况下,可以用不同的荧光团标记一个探针的1.2-1.7 kb片段,即在6-碎片场景和3色鱼实验中,一种碎片1和4的颜色,另一种用于片段2和5的颜色,另一种颜色再次用于片段3和6。对于寡头,可以使用与主要的荧光团标记的次级寡聚。[图1附近]
看到程序语义的一种方式是程序等效的科学。为程序提供语义的每种方式都隐含地标识了哪些程序等效。同样,程序等效性的概念也可以看作是将含义归因于程序的一种方式(即程序所属的等价类别)。这种观点使语义成为程序转换和程序验证的有力思想和技术的强大来源,并具有显着的优势,即可以以组成和模块化方式定义此类技术。但是,在某些情况下,计划纯粹的染色性的程序之间的等价不足以提供信息:两个程序是否等效,期间。不能从两个略有不同的程序中提取进一步的定量或因果信息,尽管不是等效。此外,由于程序等价通常是一致的,因此在任何情况下都保留了仅在特殊情况下有所不同的程序也只是不等式的。由于这些原因,必须在所有(非常常见的)情况下寻找替代程序等效性的方法,这些情况涉及转换,而转换将程序替换为仅相当于的程序[31],或者当规范不精确或不准确地满足时(例如,在现代密码学[27]中,大多数安全属性在近似意义上具有,即模仿可忽略不计的概率)。
图 1 修改后的激励价值观连续体。最内圈显示了 19 种修改后的人类价值观的圆形结构。围绕着它,显示了开放与保守、自我超越与自我提升两个维度上的四个高阶价值观。向外移动,下一个圆圈将价值观分为社会和个人关注。最外圈区分了焦虑回避和无焦虑维度。来源:自己的可视化,基于 Schwartz 等人(2012 年,第 669 页)
儿童中风造成的脑损伤会增加高阶视觉处理(HOVP)缺陷的风险,例如脑视觉障碍(CVI),如果未治疗,这会导致严重的行为和学习障碍。使用基于虚拟的现实搜索任务和结构磁共振成像分析,我们评估儿童中风患者的功能视觉缺陷程度和潜在的解剖相关性。方法:20名儿童中风患者和38个健康对照组完成了动态视觉搜索任务,该任务使用虚拟现实/眼睛跟踪(VR/ET)范式来量化2021年至2024年之间的功能视觉能力(中风后平均7.34年)。使用统计比较方法和线性回归模型分析了同类人群之间的虚拟现实评估措施,中风成像特征(视觉途径参与)和神经心理结局。结果:所有童年中风患者都可以完成VR/ET任务,其指标与视觉注意力和处理速度的神经心理学测试相关,如成功率和任务符合性以同等程度与控制措施所证明的那样。但是,在我们的患者队列中观察到对任务负荷变化的敏感性较低,对任务负荷变化的敏感性较小,并且在启动对目标的响应时会受到更大的损害。涉及后视觉途径的MRI病变分析损伤,特别是视觉辐射,下纵向筋膜或上部纵向筋膜,与较慢的反应时间相关,以在VR测试时控制目标时固定在目标上时固定在目标上。结论:受到中风影响的儿童的床边VR/ET评估可以检测到神经心理学测试证实的HOVP缺陷迹象。成像表明诊断时的后视觉途径参与与后来生活中视觉跟踪能力受损的发展密切相关。虽然HOVP缺陷的检测依赖于3至6岁之间的当前标准临床和神经心理学评估,但我们的研究表明,中风发作时成像的损伤模式可以帮助识别出患有HOVP缺陷风险的儿童。这可能使早期监控和及时的适应能力促进功能视觉发展,这对于学习和技能掌握至关重要。关键词:儿童中风,功能视觉,脑视觉障碍,高阶视觉处理,视觉辐射,后视觉途径
拓扑物理学彻底改变了材料科学,在从量子到光子系统和声音系统的不同环境中引入了物质的拓扑阶段。在此,我们提出了一个拓扑系统的家族,我们称其为“应变拓扑超材料”,其拓扑合适仅在高阶(应变)坐标转换下被隐藏和揭幕。我们首先表明,规范质量二聚体,该模型可以描述各种设置,例如电路和光学元件,等等属于该家族,在该家族中,应变坐标揭示了在自由边界处的边缘状态的拓扑非平地。随后,我们为主要支持的基塔夫链提供了一种机械类似物,该链支持拟议框架内的固定和自由边界的拓扑边缘状态。因此,我们的发现不仅扩展了拓扑边缘状态的识别方式,而且还促进了各种领域中新型的托托质材料的制造,具有更复杂的量身定制的边界。
高阶遗传相互作用对理解表型变异的分子机制具有深远的影响,其表征仍然很差。迄今为止,大多数研究都集中在成对相互作用上,因为针对高阶分子相互作用的庞大组合搜索空间设计高通量实验筛选是令人难以置信的挑战。在这里,我们开发了DANGO,这是一种基于自我发明的超毛神经网络的计算方法,旨在有效预测基因组之间的高阶遗传相互作用。作为概念的证明,我们为酿酒酵母中超过4亿个三角形相互作用提供了全面的预测,从而显着扩大了这种相互作用的定量表征。我们的结果表明,D Ango准确地预测了三梯性相互作用,揭示了与细胞生长有关的已知和新型生物学功能。我们进一步结合了蛋白质的嵌入和模型不确定性评分,以增强预测相互作用的生物学相关性和解释性。预测的相互作用可以作为在不同条件下生长反应的强大遗传标记。一起,D Ango可以更完整地了解构成表型多样性的复杂遗传相互作用。