要获得癫痫发作的自由,癫痫手术需要完全切除癫痫脑组织。在术中电视学(ECOG)记录中,癫痫组织产生的高频振荡(HFO)可用于量身定制切除缘。但是,实时自动检测HFO仍然是一个开放的挑战。在这里,我们提出了一个尖峰神经网络(SNN),用于自动HFO检测,最适合神经形态硬件实现。我们使用独立标记的数据集(58分钟,16个记录),训练了SNN,以检测从术中ECOG测量的HFO信号。我们针对快速连锁频率范围(250-500 Hz)中HFO的检测,并将网络结果与标记的HFO数据进行了比较。我们赋予了SNN新型的伪影排斥机制,以抑制尖锐的瞬变并证明其在ECOG数据集中的有效性。该SNN检测到的HFO速率(中位数为6.6 HFO/ min)与数据集中发布的HFO率(Spearman'sρ= 0.81)相当。所有8例患者的术后癫痫发作结果被“预测”为100%(CI [63 100%])的精度。这些结果为建造实时便携式电池式HFO检测系统提供了进一步的一步,该检测系统可在癫痫手术期间使用,以指导癫痫发作区的切除。
嵌入式设备可以在本地实时处理生物医学信号,因此临床研究和治疗应用的生物医学信号分析可以受益匪浅。一个例子是分析癫痫患者的颅内脑电图 (iEEG) 以检测高频振荡 (HFO),这是致痫脑组织的生物标志物。混合信号神经形态电路提供了构建紧凑、低功耗神经网络处理系统的可能性,该系统可以实时在线分析数据。在这里,我们介绍了一种神经形态系统,该系统在同一芯片上结合了神经记录头端和脉冲神经网络 (SNN) 处理核心来处理 iEEG,并展示了它如何可靠地检测 HFO,从而实现最先进的准确性、灵敏度和特异性。这是首次使用混合信号神经形态计算技术实时识别 iEEG 中相关特征的可行性研究。
定向流动性提供;结论第11章:不对称信息的市场微观量贸易;基于信息的交易模型;结论;第12章:事件套利;制定事件套利交易策略;什么构成事件?;预测方法;可交易新闻;适用事件套利;结论;第13章:高频设置中的统计套利;数学基础;统计套利的实际应用;结论;第14章:创建和管理高频策略的投资组合;
高频超声波清洗器主要应用于医疗行业、计算机、微电子计算机等,利用高频来清洗亚微米级污垢,且不损坏设备,又称数字超声波清洗器、超声波清洗槽、超声波清洗槽。
1918 年 2 月至 4 月。3 疫情可能始于法国西海岸。交战国几乎没有动力告知对手自己虚弱的状况,所以一开始只有西班牙等中立国报告了这种疾病,因此得名西班牙流感。正如 1918 年 5 月 31 日的《爱尔兰时报》不带讽刺地指出的那样:“令人惊讶的是,遭受这些流行病影响的国家 [瑞典和西班牙] 竟然都是中立国。”4 一些技术细节。首先,我将完全依赖死亡率数据,因为没有病例数据。其次,死亡率数据适用于完全登记死亡人数(原则上至少 90%)的“登记州”。直到 1933 年,登记才覆盖全国。从 1913 年到 1921 年,登记地区的州数从 24 个增加到 34 个,占美国估计人口的 62% 至 80%。最后,报告了死亡原因,但由于报告存在差异,因此需要将流感和所有形式的肺炎(支气管肺炎、大叶性肺炎和其他肺炎)导致的死亡结合起来研究流行病的发病率(1918 年,报告的流感死亡人数与肺炎死亡人数之比从北卡罗来纳州的 0.4 到蒙大拿州的 2.0 不等)。
在本文中,Sam A. Masih的隶属详细信息被错误地作为“分子和细胞工程系,Higginbottom农业大学,技术与科学大学,印度Prayagraj 211007,印度Prayagraj 211007”,但应该是分子和细胞工程学系” 211007,印度。原始文章已得到纠正。
1个学生,G.V.I.S.H.,Amravati(MS),印度2物理学系G.V.I.S.H. 通过使用纳米沉淀方法制备了添加低密度聚乙烯(LDPE)的聚乙烯乙二醇(PEG)的多孔微粒。 使用傅立叶变换红外光谱,X射线衍射,扫描电子显微镜表征了准备的粉末样品。四面红外转化(FTIR)光谱证实了LDPE中PEG的存在,PEG在LDPE中的效应在LDPE中观察到了X-射线的峰值(X-Ray衍射)。模式表明没有新的阶段形成。 扫描电子显微镜图像表明,聚乙烯乙二醇的浓度降低了聚集,并增加了聚乙烯微粒的球形程度。 关键字:LDPE/PEG微粒,FT-IR,X射线衍射,SEM。 简介微粒被定义为尺寸小于1000 µm且大于1 µm的结构,也可以从可生物降解和不可生物降解的材料中获得。 纳米沉淀,乳液扩散,双重乳液。 [1]聚乙烯(PE)是一种基于分子构象的可量身定制特性的广泛使用的塑料,其应用从膜包装和电气绝缘到容器和管道。1个学生,G.V.I.S.H.,Amravati(MS),印度2物理学系G.V.I.S.H.通过使用纳米沉淀方法制备了添加低密度聚乙烯(LDPE)的聚乙烯乙二醇(PEG)的多孔微粒。使用傅立叶变换红外光谱,X射线衍射,扫描电子显微镜表征了准备的粉末样品。四面红外转化(FTIR)光谱证实了LDPE中PEG的存在,PEG在LDPE中的效应在LDPE中观察到了X-射线的峰值(X-Ray衍射)。模式表明没有新的阶段形成。扫描电子显微镜图像表明,聚乙烯乙二醇的浓度降低了聚集,并增加了聚乙烯微粒的球形程度。关键字:LDPE/PEG微粒,FT-IR,X射线衍射,SEM。简介微粒被定义为尺寸小于1000 µm且大于1 µm的结构,也可以从可生物降解和不可生物降解的材料中获得。纳米沉淀,乳液扩散,双重乳液。[1]聚乙烯(PE)是一种基于分子构象的可量身定制特性的广泛使用的塑料,其应用从膜包装和电气绝缘到容器和管道。pe主要基于密度和分子分支的程度。在半晶体材料(如聚乙烯和聚氟乙烯)中,材料的响应取决于分子结合和体积分数,除了温度和应变速率外,还取决于结晶度的体积分数。这些材料可以被认为是由一个无定形相组成的分子网络,该相位包含具有随机定向的结晶石相的纠缠链,其作用为物理交联。[2]纳米沉淀,也称为反应降水,脱溶液,溶剂置换和溶剂转移,由Fessi et.Al.In 1989描述,是一种开发纳米颗粒和微粒的方法[1],但有关其他Polymers,包括Polyolefimers,有限的含量。由于开发的方法不使用添加剂(例如表面活性剂),因此它提供的颗粒没有杂质会诱导生物体的不良影响。需要控制纳米沉淀产生的\颗粒大小的方法。[3]此外,该方法不需要或低表面活性剂浓度。[4]纳米沉淀技术的主要原理是界面
在本文中,我们通过长时间的时间间隔收集的观测值分析回归。对于形式的渐近分析,我们假设样品是从连续的时间随机过程中获得的,并让采样间隔δ缩小至零,样品跨度t增加到无穷大。在此设置中,我们表明,只要δ→0相对于t→∞,标准的WALD统计量向无穷大和回归偏差就会变得虚假。这种现象确实是本文中考虑的回归类型在实践中经常观察到的现象。相比之下,我们的渐近理论预测,如果我们使用适当的长期差异估计的WALD测试的强大版本,则伪造性消失。使用长期对短期利率的长期回归我们的经验说明,这得到了强烈和明确的支持。
单发超快压缩成像(UCI)是研究物理,化学或材料科学方面的超快动力学的有效工具,因为其高框架速率出色和较大的框架数。但是,由于其不均匀的Sampling间隔,在传统UCI中使用的随机代码(R-代码)将导致覆盖高频信息的低频噪声,这在大型重建的忠诚度中是一个巨大的挑战。在这里,提出了高频增强的压缩活性摄影(H-CAP)。通过统一R代码的采样间隔,H-CAP以随机均匀采样模式捕获超快过程。这种采样模式使高频采样占主导地位,这极大地抑制了由R代码引起的低频噪声模糊,并实现了图像增强的高频信息。分别通过成像光学自我对焦效果和静态对象来验证H-CAP的出色动态性能和大型重建能力。,我们将H-CAP应用于双脉冲诱导的硅表面消融动力学的空间表征,该动力学以300 ps的单次射击在220帧之内进行。H-CAP提供了一种高保真成像方法,用于观察具有大帧的超快不可重复的动态过程。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月24日。 https://doi.org/10.1101/2025.01.21.634218 doi:Biorxiv Preprint