takuya uehata(日本京都大学)Yamada(日本京都大学)Daisuke Ori(日本京都大学)Alexis Vandenbon(日本京都大学,日本京都大学)Amir Giladi(以色列科学学院)Adam Jelinski(weizmann Instraizhir) (日本京都大学)Hitomi Watanabe(日本京都大学)Kazuhiro Takeuchi(日本京都大学)Kazunori Toratani(日本京托大学,日本京都大学)Takashi Mino(日本京都大学,日本)HISANORI KIRYU(日本)托尔伊大学(University the University of Tokanori kiryu) Tsujimura(日本荷马科医科大学)Tomokatsu Ikawa(日本东京科学大学)kondoh(日本京都大学)Markus Landthaler(MaxDelbrück,德国分子医学中心)阿米特(以色列魏兹曼科学学院)雅amoto(日本京都大学)Masaki Miyazaki(日本京都大学生命与医学科学研究所)Osamu Takeuchi(日本京都大学)
《经济ICS》,波士顿大学),Saliem Fakir(ACF),Ashish Fernandes(Cli Mate Risk Horizons),Kevin P. Gallagher(GDP中心),Phillip M. Hannam(Energy&Exchnertives Global实践,世界银行),林赛·希伯德(Lindsey Hibberd(The Carbon Trust),Tim Hirschel-Burns(GDP Cent Ter),Valarie Laxton(世界资源研究所(WRI),Environmen tal,资源和空间的能源学院经济学,基尔大学),Tyeler Matsuo(RMI),NicolòManych(GDP中心),George Mowles-Van der Gaag(碳信任),Tsitsi Musasike(GDP中心)(GDP中心),Imomen Outlaw(New Callimate Institute),Ying Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian中心,丽贝卡·雷(Rebecca Ray)(GDP中心),布伦丹·罗斯(ECF),艾玛·斯莱特(Emma Slater)(RMI),魏山(RMI)(发展研究所),格雷什·萨里姆(Gresh Shrimal基本服务改革(IESR)),艾米莉·泰勒(Emily Tyler)(开普敦大学非洲气候与发展研究所)《经济ICS》,波士顿大学),Saliem Fakir(ACF),Ashish Fernandes(Cli Mate Risk Horizons),Kevin P. Gallagher(GDP中心),Phillip M. Hannam(Energy&Exchnertives Global实践,世界银行),林赛·希伯德(Lindsey Hibberd(The Carbon Trust),Tim Hirschel-Burns(GDP Cent Ter),Valarie Laxton(世界资源研究所(WRI),Environmen tal,资源和空间的能源学院经济学,基尔大学),Tyeler Matsuo(RMI),NicolòManych(GDP中心),George Mowles-Van der Gaag(碳信任),Tsitsi Musasike(GDP中心)(GDP中心),Imomen Outlaw(New Callimate Institute),Ying Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian中心,丽贝卡·雷(Rebecca Ray)(GDP中心),布伦丹·罗斯(ECF),艾玛·斯莱特(Emma Slater)(RMI),魏山(RMI)(发展研究所),格雷什·萨里姆(Gresh Shrimal基本服务改革(IESR)),艾米莉·泰勒(Emily Tyler)(开普敦大学非洲气候与发展研究所)《经济ICS》,波士顿大学),Saliem Fakir(ACF),Ashish Fernandes(Cli Mate Risk Horizons),Kevin P. Gallagher(GDP中心),Phillip M. Hannam(Energy&Exchnertives Global实践,世界银行),林赛·希伯德(Lindsey Hibberd(The Carbon Trust),Tim Hirschel-Burns(GDP Cent Ter),Valarie Laxton(世界资源研究所(WRI),Environmen tal,资源和空间的能源学院经济学,基尔大学),Tyeler Matsuo(RMI),NicolòManych(GDP中心),George Mowles-Van der Gaag(碳信任),Tsitsi Musasike(GDP中心)(GDP中心),Imomen Outlaw(New Callimate Institute),Ying Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian Qian中心,丽贝卡·雷(Rebecca Ray)(GDP中心),布伦丹·罗斯(ECF),艾玛·斯莱特(Emma Slater)(RMI),魏山(RMI)(发展研究所),格雷什·萨里姆(Gresh Shrimal基本服务改革(IESR)),艾米莉·泰勒(Emily Tyler)(开普敦大学非洲气候与发展研究所)
同伴审查了准备N/A提交的N/A出版月亮的出版物Jong-Sik; Kim,Kyujung;汉,东牛; Winiarz,Jeffrey G.;哦,金吴; “有机光赋予材料的最新进展”应用光谱评论2017,53,doi:10.1080/05704928.2017.1323307 Liang,Yichen; Winiarz,Jeffrey G.; “使用基于Triphenyliamine的光致热复合材料对相位放弃的激光束的实际校正” Applied Physics B:Lasers and Optics 2017,123,1-6。月亮,Jong-Sik;史蒂文斯(Stevens),泰勒(Tyler);蒙森,托德c。 Huber,Dale L。;金,阳ho;哦,金吴; Winiarz,Jeffrey G.; “在CW条件下运行的光疗法复合材料中的亚毫秒响应时间” Scientific Reports 2016,6,30810。 Liang,Yichen;王,魏;月亮,Jong-sik; Winiarz,Jeffrey G.; “用功能化的CDSE量子点光敏的有机复合材料的光致敬性能的增强”光学材料2016,58,203-209。 恐惧,T。M。; Doucet,M。;布朗宁,J。F。; Baldwin,J。K. S。; Winiarz,Jeffrey G.; Kaiser,H。; Taub,H。; Sacci,R。L。; Veith,G。M。; “评估在硅电极上形成的固体电解质相:Ex X射线光电子光谱和原位中子反射测定法的比较”物理化学化学物理学2016,18,13927-13940。 月亮,Jong-Sik; Liang,Yichen;金,伊恩;哦,金吴; Winiarz,Jeffrey G.“水溶性波长可调ingap和INP量子点的形成” Polym。 公牛。 2016,DOI 10.1007/S00289-016-1674-7。月亮,Jong-Sik;史蒂文斯(Stevens),泰勒(Tyler);蒙森,托德c。 Huber,Dale L。;金,阳ho;哦,金吴; Winiarz,Jeffrey G.; “在CW条件下运行的光疗法复合材料中的亚毫秒响应时间” Scientific Reports 2016,6,30810。Liang,Yichen;王,魏;月亮,Jong-sik; Winiarz,Jeffrey G.; “用功能化的CDSE量子点光敏的有机复合材料的光致敬性能的增强”光学材料2016,58,203-209。 恐惧,T。M。; Doucet,M。;布朗宁,J。F。; Baldwin,J。K. S。; Winiarz,Jeffrey G.; Kaiser,H。; Taub,H。; Sacci,R。L。; Veith,G。M。; “评估在硅电极上形成的固体电解质相:Ex X射线光电子光谱和原位中子反射测定法的比较”物理化学化学物理学2016,18,13927-13940。 月亮,Jong-Sik; Liang,Yichen;金,伊恩;哦,金吴; Winiarz,Jeffrey G.“水溶性波长可调ingap和INP量子点的形成” Polym。 公牛。 2016,DOI 10.1007/S00289-016-1674-7。Liang,Yichen;王,魏;月亮,Jong-sik; Winiarz,Jeffrey G.; “用功能化的CDSE量子点光敏的有机复合材料的光致敬性能的增强”光学材料2016,58,203-209。恐惧,T。M。; Doucet,M。;布朗宁,J。F。; Baldwin,J。K. S。; Winiarz,Jeffrey G.; Kaiser,H。; Taub,H。; Sacci,R。L。; Veith,G。M。; “评估在硅电极上形成的固体电解质相:Ex X射线光电子光谱和原位中子反射测定法的比较”物理化学化学物理学2016,18,13927-13940。月亮,Jong-Sik; Liang,Yichen;金,伊恩;哦,金吴; Winiarz,Jeffrey G.“水溶性波长可调ingap和INP量子点的形成” Polym。 公牛。 2016,DOI 10.1007/S00289-016-1674-7。月亮,Jong-Sik; Liang,Yichen;金,伊恩;哦,金吴; Winiarz,Jeffrey G.“水溶性波长可调ingap和INP量子点的形成” Polym。公牛。2016,DOI 10.1007/S00289-016-1674-7。2016,DOI 10.1007/S00289-016-1674-7。
农用无人机集机器人、人工智能、大数据、物联网等技术于一体,被广泛应用于播种、地块监测、作物病虫害检测、农药化肥喷洒等各类农业作业,大大提高农业生产效率、解放劳动力(Kim et al.,2019),正在成为精准农业航空领域的一股生力军(Wang et al.,2019)。与传统农业机械相比,农用无人机具有体积小、重量轻、便于运输,飞行控制灵活等特点,具有作业精准、高效、环保、智能、使用方便等特点。但很多时候,飞行过程中农用无人机载荷的实时变化会影响其速度、精度和飞行轨迹稳定性。徐建军等(2019)指出,农用无人机在作业过程中应时刻保持良好的飞行姿态,提高作业效率。魏等提出了一种使用 PID 控制器和鲁棒 TS 模糊控制方法实现 AUAV 飞行轨迹稳定性的飞行动力学模型。对于不同的飞行条件,该模型可以在飞行路径中实现一定的稳定性,以抵抗负载扰动。
保时捷新款 Cayman GT4 不仅仅是其中置引擎轿跑车中最热门的版本,还明确表明了保时捷决心保持其作为世界最佳跑车制造商的形象,而不是被视为高端 SUV 和奔驰豪华轿车的供应商,而这可能已经开始发生。“保时捷现在和将来都将继续推广激进的双门跑车——这些跑车由该公司位于魏斯阿赫的赛车运动部门开发,”该公司表示。该公司表示,这款车“与标志性的 911 GT3 共享零部件和基因精神”,并报告了 7 分 40 秒的纽伯格林单圈成绩,“将 Cayman GT4 置于其细分市场顶端的新标杆地位”。GT4 售价为 64,451 英镑,将于夏季开始在英国上市,它远不止是升级版的 Cayman S 或 GTS。发动机排量从这些车的 3.4 升升至 3.8 升,水平对置六缸发动机可产生 380 马力和 310 磅英尺的扭矩,比 GTS 分别增加了 13% 和 11%。这意味着
Andrew Bissett、8 Jodie van de Kamp、8 Josep M. Gasol、9 Ramon Massana、9 Yi-Chun Yeh、10 Jed A. Fuhrman、11 Julie LaRoche 1 * 1 西澳大利亚大学西澳海洋研究所,澳大利亚克劳利;2 加拿大新斯科舍省哈利法克斯达尔豪斯大学生物系;3 澳大利亚尼德兰兹百老汇 Minderoo 基金会;4 德国基尔 GEOMAR 亥姆霍兹海洋研究中心;5 德国不来梅港阿尔弗雷德·魏格纳研究所亥姆霍兹极地和海洋研究中心;6 德国不来梅马克斯·普朗克海洋微生物研究所;7 英国普利茅斯普利茅斯海洋实验室;8 澳大利亚霍巴特联邦科学与工业研究组织; 9 CSIC 海洋研究所,西班牙加泰罗尼亚巴塞罗那; 10 卡内基科学研究所,斯坦福大学,加利福尼亚州,美国; 11 南加州大学生物科学系,美国加利福尼亚州洛杉矶
1 德国明斯特大学转化精神病学研究所,Albert-Schweitzer-Campus 1,A9a 楼,48149 明斯特,德国; 2 哈雷大学心理学系,Emil-Abderhalden-Straße 26,06108 哈雷,德国; 3 德国精神卫生中心,德国精神卫生中心,哈勒,MLU Halle,德国哈勒; 4 法兰克福大学医院精神病学、心身医学和心理治疗系,Heinrich-Hoffmann-Strasse 10,60528 法兰克福,德国; 5 耶拿大学医院精神病学和心理治疗系,Philosophenweg 3,07743 耶拿,德国; 6 德国明斯特大学转化神经科学研究所,Albert-Schweitzer-Campus 1,Building A9a,48149 Münster,德国; 7 德国明斯特大学临床放射学系,Albert-Schweitzer-Campus 1,Building A16,48149 Münster,德国; 8 德国明斯特大学医院精神病学系,阿尔伯特-施魏策尔校区 1,A9 楼,48149 明斯特,德国; 9 澳大利亚维多利亚州墨尔本大学精神病学系和 10 澳大利亚墨尔本弗洛里神经科学和心理健康研究所
魏斯曼博士:那么,让我先来了解一下 RNA 是什么:我们的基因组,我们的 DNA 包含所有蛋白质和所有使细胞生长和生存的指令。为了将这些指令转化为蛋白质,细胞使用 RNA。RNA 的作用是复制 DNA 中的蛋白质序列。然后由生产蛋白质的机器读取。因此,mRNA 技术就像一个中间人。当你将它送到细胞中时,它会立即被那些机器读取并产生蛋白质。在 COVID 的情况下,这种蛋白质被置于细胞表面,免疫系统会将其识别为外来物质并对其做出反应。凯蒂·卡里科 (Katie Kariko) 和我 20 多年前就开始研究 mRNA。我们发现了核苷修饰的 mRNA,这是 Moderna 和辉瑞疫苗中使用的 RNA 形式。不同之处在于,RNA 疗法没有取得任何进展,因为 RNA 具有很强的炎症性,注射后会使动物生病。凯蒂和我开发了改良的 RNA,它不会引起炎症反应,这使得它更安全,更适合用作疫苗。
魏森鲍姆一生中的大部分时间都在警告人们将人类特质投射到人工智能上会带来危险。本论文同样通过主要关注人工智能拟人化的一些负面伦理后果,对人工智能的拟人化进行了研究。对这些后果进行详尽的分析几乎是不可能的,但通过关注拟人化作为一种炒作形式和谬论,本文表明了拟人化如何夸大了人工智能系统的能力和性能,以及扭曲了对它们的一系列道德判断。本文的结构如下。在第一部分,本文解释了拟人化的含义,以及这种现象在人工智能领域的一些表现方式。本文重点指出拟人化是围绕人工智能的炒作的一个组成部分。在这种情况下,炒作被理解为对人工智能能力和性能的歪曲和夸大,而炒作的组成部分则被理解为炒作的一部分。在第二部分中,本文表明拟人化通过其谬误性扭曲了道德判断。它通过关注人工智能的四个核心道德判断来说明这一点:关于其道德品质和地位的判断,以及关于对人工智能的责任和信任的判断。第三部分通过提供简短的总结和结论结束了这项工作。* Adriana Placani adrianaplacani@fcsh.unl.pt
1. 纳米结构与纳米材料:合成、性质与应用,G. Cao 编,帝国理工学院出版社,2004 年。 2. 纳米科学与技术,Robert Kelsall(主编)、Ian W. Hamley(联合主编)、Mark Geoghegan(联合主编)编,ISBN:978-0-470-85086-2 3. 纳米材料化学:合成、性质与应用,CNR Rao、A. Muller、AK Cheetham 编,WILEY-VCH Verlag GmbH & Co. KGaA,魏因海姆,ISBN:3-527-30686-2。 4. 纳米材料化学,Kenneth J. Klabunde 编,John Wiley & Sons, Inc.,ISBN:0-471-38395-3(精装本);0-471-22062-0。 5. 纳米科学与纳米技术教科书,BS Muty、P. Shankar、Baldev Raj、BB Rath 和 James Murday 编著,University Press, IIM ( ISBN-978 81 7371 738 3)。 6. 纳米技术简介,作者:Charles P. Poole Jr 和 Frank J. Owens,Wiley-Inter science,2003 年。 7. James A. Murphy- 金属表面处理与处理,McGraw-Hill,纽约,1971 年 8. 表面工程手册,由 Keith Austin 编辑,伦敦:Kogan Page,1998 年 课程成果: