识别导致神经遗传疾病的 DNA 变异的主要瓶颈是 VUS 的功能分析。本研究的目的是通过在 NPC 和斑马鱼中使用 CRISPR/Cas9 基因组编辑来开发一种方法,以对在巨脑回患者中观察到的候选致病变异进行建模。通过 aCGH 和 WES 分析了 20 名巨脑回/无脑回患者的 DNA,并确定了变异的优先级。通过使用 CRISPR/Cas9 基因组编辑在 NPC 和斑马鱼中生成突变系,并与已知在巨脑回/无脑回中发挥作用的三个关键基因(TUBG1、LIS1、DAB1)之一的模型进行了比较。使用 3D 基质胶腔系统 (ICChip) 对 NPC 进行表征,并在 3 dpf 和 5 dpf 时观察到发育中的斑马鱼的表型变化。使用 qPCR 对目标突变系和选定的变体系进行了比较。与对照组相比,在 3 个选定基因的突变 NPC 系中观察到迁移延迟。WES 确定了两个候选变体,CGREF1 和 NOL9。观察到 CGREF1KO 斑马鱼和 CGREF1KONPC 中无脑畸形和小头畸形相关基因和神经元分化基因的表达变化。在 Tubg1 突变斑马鱼中观察到严重的表型,包括小头和小眼,以及肝脏/肠道发育异常。我们的研究结果证明,使用 NPC 和斑马鱼模型可以以省时省钱的方式测试导致与 NPC 迁移相关的缺陷的变异。多组学分析可以进一步将这种方法的使用范围扩展到其他神经遗传缺陷组。该项目由 TUBITAKCOST Action 资助,代码号为 217S944。
耐粘蛋白是在动物中发现的突出的抗病毒蛋白。耐蛋白的主要功能是生产3'-deoxy -3',4' - 二维德罗 - 酪氨酸三磷酸(DDHCTP),这是一种参与病毒RNA合成的抑制性核苷酸。哺乳动物模型中的研究表明,DDHCTP会干扰代谢蛋白。但是,该假设尚未在Telest中进行检验。在这项研究中,测试了耐毒素在调节病毒出血性败血病毒(VHSV)感染中的代谢改变中的作用。被VHSV感染时,viperin - / - 鱼的死亡率较高。vhsv拷贝数和NP基因的表达在耐蛋白 - / - 芬中显着增加。代谢基因分析显示,苏打,HIF1A,FASN和ACC表达的显着差异,表明它们对代谢的影响。在VHSV感染期间,斑马鱼幼虫中的胆固醇分析表明,胆固醇的产生显着上调,没有耐耐蛋白。对ZF4细胞的体外分析表明,脂质产生的降低显着降低,并且具有耐毒素过表达的活性氧(ROS)产生的显着上调。中性粒细胞和巨噬细胞的募集显着调节。因此,我们证明了耐蛋白在干扰VHSV感染过程中的代谢改变中起作用。
研究文章:方法/新工具| Novel Tools and Methods Whole-brain mapping in adult zebrafish and identification of the functional brain network underlying the novel tank test https://doi.org/10.1523/ENEURO.0382-24.2025 Received: 30 August 2024 Revised: 10 January 2025 Accepted: 13 January 2025 Copyright © 2025 Rajput et al.这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。
材料(ISSN 1996-1944)于2008年推出。The journal covers twenty-five comprehensive topics: biomaterials, energy materials, advanced composites, advanced materials characterization, porous materials, manufacturing processes and systems, advanced nanomaterials and nanotechnology, smart materials, thin films and interfaces, catalytic materials, carbon materials, materials chemistry, materials physics, optics and photonics, corrosion, construction and building materials, materials simulation and design, electronic materials, advanced and功能性陶瓷,眼镜,金属和合金,那么吗?物质,聚合物材料,量子材料,材料力学,绿色材料,一般。材料提供了一个独特的机会,可以贡献高质量的文章并利用其庞大的读者。
1个神经社会记忆的实验室,生理学研究所,分子生物学和神经性研究(ifibyne),Conicet,fceyn-uba,4个布宜诺斯艾利斯,阿根廷。 div>5 2生物多样性与实验和应用生物学研究所(IBBEA-Conicet),布宜诺斯艾利斯,阿根廷6 3 3 3社会行为神经内分泌学实验室,生理学,分子生物学和神经科学研究所(Ifibyne)(ifibyne),7 Conicet,Fceyn-buba,ficeyn-uba,buenestina,buenentina,buenentina,buenentina,buenentina,buenentina 89 *9 *
fi g u r e 1“绿色芽”模板,用于图2所示的分析。Y轴给出了PAS(百分比)的陆地或海洋生态系统的全球覆盖范围,其中量表的范围从0%到最大50%,这是最大全球PA覆盖率的最高普遍数字(Dinerstein等,2017,2019); X轴范围从低到高效率。“高”在有效性量表上表明,在严格的保护下(IUCN PA类别I和II),大多数PA都是最佳位置的,管理良好且资源充足。“低”表示大多数PA都位于低生物多样性价值的领域,具有较低的保护水平(Sensu IUCN PA类别V和VI),管理不善且融资不足。包围的“ C”用于表示PA覆盖范围的当前全局状态和估计有效性。数字“ 1”和“ 2”表示分别接近30%和50%PA覆盖率的情况,而不会克服影响当前有效性水平的障碍。数字“ 3”和“ 4”表示分别接近30%和50%PA覆盖率的情况,同时克服了当前PA有效性的障碍。增加颜色转变位置的不确定性是通过增加圆的模糊性来指示的。箭头在这里包括指导眼睛。其他信息:请参阅补充文本和图形和shoots_pa.xls(https://zenodo.org/recor d/7690684)。
环境中纳米塑料(NP)和微塑料(MP)的存在被认为是全球规模的问题。由于其疏水性和较大的特异性表面,NP和MP可以吸附其他污染物,作为多环芳烃(PAHS),并调节其生物利用度和危害。成年斑马鱼暴露3和21天,至:(1)0.07 mg/l NP(50 nm),(2)0.05 mg/l MPS(4.5μm),(3)MPS,带有水的油的吸附油化合物(WAF)的浓度(WAF)的浓度(WAF),均与含有戒指的香油(MPS-WAF),(MPS-WAF),(MPS-WAF),(4)MPS(4)MPS(4) (MPS-B(A)P),(5)5%WAF和(6)21μg/L B(a)p。在接近微绒毛的肠腔中可以看到类似NP的电义颗粒。MP在肠腔中大量发现,但未内化到组织中。21天后,NPS引起CAT的显着下调,GPX1A和SOD1的上调,而MPS上调CYP1A并增加了肝脏真空的患病率。在ill中未观察到组织病理学改变。在这项研究中,受污染的MPS并未增加斑马鱼的PAH水平,但结果强调了塑料颗粒的潜在差异影响,这取决于其大小,因此必须紧急解决真实环境NP和MPS的生态毒理学影响。
在本文中,我们在数值模拟中实施和研究一种基于模型的增强学习(MBRL)方法,称为自适应光学(PO4AO)的策略优化。我们使用面向对象的Python自适应光学(OOPAO)模拟工具来模拟Provence自适应光学元件金字塔运行系统(Papyrus)光学台,并提供系统的实时模型。尤其是我们证明了该方法的预测能力,因为时间误差主导了木瓜的误差预算。我们首先介绍了强化学习框架的详细描述,包括我们对状态空间,行动空间和奖励功能的定义。实验部分将PO4AO与在不同大气条件下调整良好的积分器进行了比较。总而言之,在将方法应用于实际望远镜和未来工作的可能途径之前,我们将讨论实验在数值模拟中的重要性。
剥落的面罩是一种掩模,其中包含弹性材料,例如明胶,使其易于涂抹和去除。这些剥落的口罩通过散布以形成稀薄的透明膜层来施加到面部。pangasius cat鱼明胶是剥落蒙版制剂中的胶凝剂,而将astaxanthin添加为抗氧化剂。astaxanthin是一种类似于β-胡萝卜素的分子结构的类胡萝卜素色素,与β-胡萝卜素相比,在中和自由基中表现出更强的抗氧化活性。这项研究的目的是使用DPPH方法确定由Pangasius catfish(Pangasius hypophthalmus)明胶的剥落凝胶口罩的抗氧化活性。astaxanthin提取物用作剥落凝胶面膜产生的活性成分,astaxanthin提取物浓度为0.5%。由pangasius catfish明胶制成的剥落凝胶面膜的抗氧化活性测试的结果补充了astaxanthin,其IC 50值为7572.84 µg/ml,而比较面膜的IC 50值(亮柠檬黑头品牌)为5045.74 µg/ml。这些结果表明,与市场上可用的比较口罩相比,产生的面膜的抗氧化活性较低。
照片3:大型雌性烤鳗(上图)和常规的鳗鱼。一个大的雌性鳗鱼是正常大小的两倍,可以做两份(由Aichi Fisheries Research Institute提供)