在全球变化中,许多动物种群正在下降。这些下降因与极端温度有关的大规模死亡事件而加剧了这些下降。尽管预计在21世纪的温度会升高,但很少有方法可以研究气候变化是否会加速生态灾难的发生。,我们对北部温带湖泊的鱼死亡率事件与并发水和空气温度填充之间建立了建模。水温和空气温度都是死亡率事件的可靠预测指标。基于水和空气温度气候预测,模型预测!在2100的频率中分别增加了6至34倍的频率。我们的建模方法揭示了温度上升与实时展开的生态灾难的频率之间的密切关联。
沿海泻湖是加利福尼亚州流行和受威胁物种的重要栖息地,这些栖息地影响了城市化和干旱的影响。环境DNA已被提升为帮助监测生物群落的一种方式,但在不同的方案中引入的偏见尚待理解,该方案旨在克服旨在克服研究中的独特系统提出的挑战。浑浊水是这些系统中EDNA恢复的一种方法论挑战,因为它迅速堵塞了过滤器,从而阻止了样品的及时处理。我们研究了两种解决方案产生的社区组合中的偏见,以克服由于浊度而缓慢的效果:冻结在填充前(用于存储目的和长期处理)和使用沉积物(与水样品相反)。在下游EDNA分析中对社区组成的偏差评估进行了两组底漆,12s(Fin)和16S(细菌和古细菌)。我们的结果表明,在使用较大的孔径(3 µm)的滤波器时,在填充前的冷冻水对每个底漆的社区组成有不同的影响。尽管如此,在关注菲什社区(12s)时,预冰的水样品仍然可以作为存储和处理浊度水样品的可行替代方案。应谨慎使用沉积物样品作为处理水样品的替代方法,至少应增加采样的生物复制和/或体积的数量。
简单总结:水产养殖业是食品生产和全球贸易的重要部门。过去几年中,几种新方法已在不同鱼类物种中建立了基因改造。这些方法表明,包括 CRISPR/Cas9 技术在内的基因编辑工具非常强大,并广泛应用于水产养殖业。不同鱼类及其病原体的基因组中的有针对性和精确的修改为不同的水产养殖部门带来了根本性的改善,包括抗病性、生长或繁殖。这些新技术提供了可行的分子装置,可以促进鱼类和甲壳类动物功能基因组学和治疗应用的发展。总之,通过特定的基因改造方法在水产养殖中创造突变动物是现实。
欧米茄脂肪酸是人类健康和福祉所必需的必要营养素。这些脂肪酸是一种被认为“必不可少的”的多不饱和脂肪酸,因为它们不能由人体产生,并且必须通过饮食获得。欧米茄脂肪酸的两种主要类型是omega-3和Omega-6,这两个对体内各种功能都很重要。omega-3脂肪酸在鲑鱼,金枪鱼和沙丁鱼等脂肪鱼中,以及亚麻籽,chia种子和核桃等其他食物中发现。Omega-6脂肪酸在植物油,玉米油和红花油以及坚果和种子中发现。Omega-3脂肪酸在大脑功能中起着至关重要的作用,因为它们是大脑和神经系统的关键组成部分。
我们的保护工作由三部分组成的国家战略计划指导,我们每五年更新一次。本次修订是我们的第四代计划,将涵盖 2022-2026 财年。总体而言,该计划的各个组成部分确定了保护目标、优先事项和目标,这些目标、优先事项和目标是由总部、地区和实地工作人员与保护合作伙伴和利益相关者共同制定的。国家战略计划确保我们不断将资源分配给最需要的栖息地和优先事项。国家战略提出了愿景、目标和国家优先事项。区域实施计划介绍了每个地区的地理重点领域(即优先事项)、重点物种和保护目标。战略计划审查报告了各地区前五年的成就,并总结了各地区的保护目标。
摘要:水产养殖是世界上生长最快的粮食领域,可为人类食用而产生超过一半的鱼类。水产养殖饲料包括从沙丁鱼等野生鱼类中提取的纤维化和油炸油,并带来生态,粮食安全和经济弊端。微藻,酵母,真菌,细菌和其他替代成分在提供蛋白质/氨基酸,脂质或omega-3来源和生物活性分子来源的水上成分中表现出了有希望的成分。本评论文章讨论了文献经常缺乏数据的问题,例如最近使用微生物,技术创新,挑战和机会来发展水产养殖饮食的低环境足迹。这些成分通常需要新颖的加工技术来提高消化率和鱼类的生长并减少抗逆转因素。这是对填充的重要差距,因为微藻是饲料中最常用的有机体,尤其是作为饮食补充剂或与其他成分混合的。生产,加工和配方步骤可能会影响营养品质。需要逐步策略来评估这些成分以供饲料应用,在本文中,我阐明了评估营养和环境反应指标的逐步关键方法,以使用这些微生物来开发高度可持续的含水饲料,这将指导对这些新颖成分的更为明智地包含这些新颖的成分。
简介经过十多年的规范狩猎和诱捕以及对牲畜掠夺的蓄意应对,爱达荷州的灰狼 (Canis lupus) 种群仍然数量众多且具有恢复力。爱达荷州鱼类和野生动物部 (IDFG) 致力于维持和管理一个可行、可自给自足的狼群,并了解狼带来的社会、经济和生物挑战。爱达荷州鱼类和野生动物委员会 (Commission) 通过监督 IDFG,是爱达荷州公民野生动物资源的主要管理者。委员会和 IDFG 负有法律责任,以保存、保护、延续和管理爱达荷州的所有野生动物(爱达荷州法典 36-103)。委员会将灰狼归类为大型猎物。在 IDFG 战略计划的基础上,这项 2023-2028 年狼管理计划为 IDFG 工作人员提供了未来 6 年监测和管理狼群种群、冲突和收获的指导。该计划采纳了 2002 年爱达荷州狼保护和管理计划(2002 年狼计划)的指导,旨在支持根据《濒危物种法案》(ESA)将狼从濒危物种名单中除名以及除名后的管理。
OEHHA 更新了针对卡斯泰克湖和卡斯泰克泻湖的咨询,因为有关鱼组织中汞和多氯联苯 (PCB) 含量的更多信息已经发布。此咨询取代了之前关于食用卡斯泰克湖和卡斯泰克泻湖(也分别称为上湖和下湖)鱼类的咨询。这些水体位于洛杉矶县圣克拉丽塔以北约 10 英里处。此咨询是 OEHHA 持续努力的一部分,旨在为来自加州不同水体的鱼类提供安全食用建议。
摘要:计算机视觉已应用于鱼类识别至少三十年。随着 2010 年代初深度学习技术的出现,数字图像的使用量强劲增长,而且这种趋势可能会持续下去。随着发表的文章数量的增加,跟踪当前的最新技术水平并确定新研究的最佳行动方案变得越来越困难。在此背景下,本文通过确定该主题的主要研究并简要描述其方法来描述当前的最新技术水平。与大多数先前与应用于鱼类识别、监测和管理的技术相关的评论不同,本文没有提供所提出的技术的详细概述,而是重点关注仍然存在的主要挑战和研究差距。重点强调了普遍存在的弱点,这些弱点阻碍了这种技术在现实条件下的实际操作中的更广泛使用。提出了一些可能的解决方案和未来研究的潜在方向,以努力使学院开发的技术更接近实践要求。
摄食和生长是生物体中两个密切相关且重要的生理过程。对哺乳动物的研究为我们提供了一系列关于神经肽及其受体的特征描述以及它们在食欲控制和生长中的作用。中枢神经系统,特别是下丘脑,在食欲的调节中起着重要作用。根据其在摄食调节中的作用,神经肽可分为促食欲肽和厌食肽。迄今为止,神经肽对摄食和生长的调控机制主要从哺乳动物模型中进行探索,然而,作为低等且多样化的脊椎动物,鱼类对神经肽及其受体的调控作用的了解甚少。近年来,组学和基因编辑技术的发展加速了对神经肽及其受体研究的速度和深度,这些强大的技术和工具使得人们可以从更精准、更全面的视角探索神经肽的功能机制。本文综述了神经肽和受体的组学和基因编辑技术的最新进展及其在鱼类摄食和生长调控中的研究进展,旨在比较了解神经肽在非哺乳动物,特别是鱼类中的作用机制。