土著藏族已经开发了自适应生理机制,以应对Qinghai-Xizang高原的低氧环境。据报道,与缺氧诱导因子途径相关的内皮PAS蛋白1基因(EPAS1)内的遗传变异与藏族之间的低氧适应性有关。大脑在体内表现出最高的氧气消耗,特别容易受到高空缺氧的影响。我们研究了Qinghai-Xizang高原中藏族的结构和功能性脑网络的遗传影响。在这项研究中,招募了135名年轻土著藏族(62名男性和73名女性)作为实验组。 65名与相关特征相匹配的低地汉族人被招募为遗传变异分析的对照组。基于先前的报道,选择了EPAS1中的12个单核苷酸多态性基因座进行基因分型。随后,使用磁共振成像(MRI)获得了大脑的T1结构和静止状态功能图像。单倍型分析表明,藏族中GA和CAAA单倍型的频率明显高于低地汉族个体。藏人被认为是更高的适应性。因此,藏族被归类为遗传适应的藏族(GHA-tibetans)和遗传适应性较低的藏人(GLA-tibetans)。自适应的大脑变化也参与了自发的休息状态活动网络。与Gla-tibetans相比,Gha-tibetans在左中央回和右侧毛氨酸回去,右侧额叶和右后扣带回回去的皮质表面积明显更大,在左PericalCarine Gyrus和右PericalCarine Gyrus和右上角的皮质体积中,右侧额叶和右后扣回去。在多个网络中观察到功能连接显着提高,包括体育体网络,腹侧注意网络,视觉网络和默认模式网络。这项研究揭示了EPAS1遗传变异与土著藏族中大脑结构和功能网络的适应性之间的关系,表明大脑的适应性变化主要集中在与视觉感知,运动控制和相关功能网络相关的区域上。这些大脑变化可能有助于土著人口在极端环境中更好地调节其身体活动。
致谢 ............................................................................................................................. 67
号质量,提高信噪比。特征提取根据特定的BCI范式所设计的心理活动任务相关的神经信号规律,采用时域、频域、空域方法或相 结合的方法提取特征。模式识别通过采用先进的模式识别技术或机器学习算法训练分类模型,针对特定的用户定制特征提取和解 码模型。 3. 控制接口:根据具体的通信或控制应用要求,控制接口把上述解码的用户意图所表征的逻辑控制信号转换为语义控制信号,并由
收稿日期 : 2023-05-22 基金项目 : 广东省大学生创新创业训练计划项目 (S202010566005); 国家自然科学基金青年基金 (31702347) 作者简介 : 王思进 (2000—), 男 , 本科生 , 主要从事渔业资源生物学研究 。 E-mail:1362882982@qq. com 通信作者 : 侯 刚 (1982—), 男 , 副教授 , 博士 , 主要从事南海鱼类早期资源研究 。
5 上海交通大学生物医学工程学院,上海,200030 【摘要】脑机接口(BCI)设备是进行神经刺激和记录的重要工具,在神经系统疾病的诊断和治疗中有着广阔的应用前景。此外,磁共振成像(MRI)是一种有效且非侵入性的全脑信号捕获技术,可以提供大脑结构和激活模式的详细信息。将BCI设备的神经刺激/记录功能与MRI的非侵入性检测功能相结合对脑功能分析具有重要意义。然而,这种结合对神经接口设备的磁和电性能提出了特定的要求。首先探讨了BCI设备与MRI之间的相互作用,随后对二者结合可能产生的安全风险进行总结和整理,从BCI设备的金属电极、导线等危害的来源入手,分析了存在的问题,并总结了目前的研究对策。最后,简要讨论了BCI磁共振安全性的监管问题,并提出了增强相关BCI设备磁共振兼容性的建议。
ISSN 1004‑9037,代码元SCYCE4数据采集与处理杂志卷。37,编号6,2022年11月,第pp。1401-1411 doi:10。16337/j。1004-9037。2022。06。020ⓒ2022撰写的数据采集与处理杂志
摘要:斑马鱼已成为研究人类许多生理和病理生理过程的流行模型。近年来,它在代谢性疾病(即肥胖和糖尿病)的研究中迅速出现,因为葡萄糖和脂质稳态的调节机制和代谢途径在纤维中是高度保守的。斑马鱼也被广泛用于神经科学领域,以研究由于成年期间神经干细胞的高维持和活性而导致的大脑可塑性和再生机制。最近,大量证据表明,代谢性疾病可以改变脑稳态,导致神经炎症和氧化应激,并导致神经发生降低。迄今为止,这些病理代谢疾病也是认知功能障碍和神经退行性疾病发展的风险因素。在这篇综述中,我们第一个旨在描述斑马鱼中建立的主要代谢模型,以证明它们与各自的哺乳动物/人类的相似之处。然后,在第二部分中,我们报告了代谢性疾病(肥胖和糖尿病)对脑体内平衡的影响,特别关注血脑屏障,神经障碍,炎症,氧化应激,认知功能和大脑形象。最后,我们提出了探索有趣的信号通路和调节机制,以便更好地了解代谢性疾病如何对神经干细胞活性产生负面影响。
∗ 基金项目 : 国家自然科学基金 (61072135,81971702), 中央高校基本科研业务费专项 (2042017gf0075,2042019gf00720), 湖北
未来市场发展潜力巨大,鼓励政策频出,应用场景广阔。市场端:据麦肯锡2020年研究报告显示,2030-2040年脑机接口全球 每年的市场规模可能在700亿到2000亿美元之间;政策端: 2024 年 1 月,工信部等七部门发布《关于推动未来产业创新发展 的实施意见》,突破脑机融合、类脑芯片、大脑计算神经模型等关键技术和核心器件,研制一批易用安全的脑机接口产 品,鼓励探索在医疗康复、无人驾驶、虚拟现实等典型领域的应用 ;应用端:科研实验平台重视神经创新技术的的研发,具 有交叉融合特色实验支撑的能力。神经影像技术研发、神经计算软件研发、神经电子技术研发等多方面神经技术的研发,对神经 感知、神经调控和神经计算的研究提供技术支持,开展以脑疾病诊治与康复为核心的重大基础科学问题和智能决策、人机交互等 关键技术应用基础研究,布局神经数字疗法、神经电子药物和智能神经康复三个研究方向。