在可盖实验的鲁棒参数设计中,每个块内响应观测值的相关性和模型参数不确定性通常会影响获得理想的工作条件。在本文中,建议基于贝叶斯混合回归的多响应表面建模和优化方法来解决上述问题。首先,混合效应模型被合并到贝叶斯框架中,并使用贝叶斯定理得出模型参数的后验分布。其次,使用混合蒙特卡洛算法来计算模型参数。第三,构建满足规范的预期质量损失函数是为了减少异常值对优化结果的影响,并且通过混合遗传算法获得了最佳因素设置。此外,后验概率用于评估优化结果的符合性。最后,使用添加剂制造过程的模拟研究和现实世界示例来说明该方法的生存能力。与当前技术相比,所提出的方法可以减少模型不确定性对建模和优化结果的影响,从而导致更合适和强大的优化结果。
摘要 - 本文介绍了超维计算(HDC)域中数据的聚类。在先前的工作中,已经提出了一个基于HDC的聚类框架,称为HDCluster。但是,现有的HDCluster的性能并不强大。在初始化步骤中随机选择簇的高量向量,HDCluster的性能被降解。为了克服这种瓶颈,我们通过探索编码数据的相似性(称为查询过量向量,分配了初始群集过度向量。组内过度向量的相似性比组间高向量具有更高的相似性。利用查询过量向量之间的相似性结果,本文提出了四种基于HDC的聚类算法:基于相似性的K-均值,相等的Bin宽度直方图,相等的BIN高度直方图和基于相似性的亲和力传播。实验结果说明:(i)与现有的HDCluster相比,我们提出的基于HDC的聚类算法可以实现更好的准确性,更健壮的性能,更少的迭代和更少的执行时间。基于相似性的亲和力提出优于八个数据集上的其他三种基于HDC的聚类算法,而聚类准确性则高于2%约38%。(ii)即使对于一通聚类,即没有群集高量向量的任何迭代更新,我们提出的算法也可以提供比HDClter更强大的聚类精度。(iii)在八个数据集上,当八分之一的数据集投影到高维空间上时,八分之一可以达到更高或可比的精度。传统聚类比HDC更可取,当时簇数k的数量很大。
摘要 — 本研究通过一种计算效率高的鲁棒控制策略解决了联网电动汽车的生态自适应巡航控制问题。该问题在空间域中采用非线性电力传动系统模型和运动动力学的真实描述来制定,以产生凸最优控制问题 (OCP)。OCP 通过一种新颖的鲁棒模型预测控制 (RMPC) 方法解决,该方法处理由于模型不匹配和前导车辆信息不准确而引起的各种干扰。RMPC 问题通过半正定规划松弛和单线性矩阵不等式 (sLMI) 技术解决,以进一步提高计算效率。使用实验收集的驾驶周期评估所提出的实时鲁棒生态自适应巡航控制 (REACC) 方法的性能。通过与标称 MPC 进行比较来验证其鲁棒性,标称 MPC 会导致速度限制约束违规。所提出方法的能源经济性优于最先进的时域 RMPC 方案,因为可以将更精确拟合的凸动力传动系统模型集成到空间域方案中。与传统恒定距离跟随策略 (CDFS) 的额外比较进一步验证了所提出的 REACC 的有效性。最后,验证了 REACC 可以借助 sLMI 和由此产生的凸算法实现实时实现。
摘要:代谢网络可能是最具挑战性和最重要的生物网络之一。他们的研究提供了有关生物学途径的工作方式以及特定生物体对环境或治疗的鲁棒性的见解。在这里,我们提出了一个有针对边缘的顶点重量作为代表代谢网络的新框架的定向超图。这种基于超级图的表示捕获了代谢物和反应之间的高阶相互作用,以及反应和化学计量权重的方向性,从而保留了所有必需信息。在此框架内,我们提出了通信性和搜索信息作为指标,以量化有向超图的鲁棒性和复杂性。我们探讨了网络方向对这些度量的含义,并通过将它们应用于小型大肠杆菌核心模型来说明了一个实践示例。此外,我们比较了30种不同模型的代谢模型的鲁棒性和复杂性,并连接结构和生物学特性。我们的发现表明抗生素耐药性与高结构鲁棒性有关,而复杂性可以区分真核和原核生物。
1医学物理部,纪念斯隆·凯特林癌症中心,纽约,纽约,10065,美国; locastre@mskcc.org(E.L。); paudyalr@mskcc.org(R.P.); amareshks@gmail.com(A.S.K。)2威斯康星州医学院放射学系,密尔沃基,威斯康星州53226,美国; plaviole@mcw.edu 3放射科,纪念斯隆·凯特林癌症中心,纽约,纽约,10065,美国; akino@mskcc.org(O.A.); hatzoglv@mskcc.org(v.h。); schwartzl@mskcc.org(L.H.S.)4外科部,纪念斯隆·凯特林癌症中心,纽约,纽约,10065,美国; goha@mskcc.org(a.c.g. ); bochnerb@mskcc.org(B.H.B. ); wongr@mskcc.org(R.J.W.) 5医学系,纪念斯隆·凯特林癌症中心,纽约,纽约,美国纽约10065; rosenbj1@mskcc.org 6辐射肿瘤学系,纪念斯隆·凯特林癌症中心,纽约,纽约,纽约,10065,美国; leen2@mskcc.org *通信:davea@mskcc.org;电话。 : +1-(212)-639-3184;传真: +1-(212)-717-3010†这些作者对这项工作也同样贡献。4外科部,纪念斯隆·凯特林癌症中心,纽约,纽约,10065,美国; goha@mskcc.org(a.c.g.); bochnerb@mskcc.org(B.H.B.); wongr@mskcc.org(R.J.W.)5医学系,纪念斯隆·凯特林癌症中心,纽约,纽约,美国纽约10065; rosenbj1@mskcc.org 6辐射肿瘤学系,纪念斯隆·凯特林癌症中心,纽约,纽约,纽约,10065,美国; leen2@mskcc.org *通信:davea@mskcc.org;电话。: +1-(212)-639-3184;传真: +1-(212)-717-3010†这些作者对这项工作也同样贡献。
预训练已在深度学习中被广泛采用,以提高模型性能,特别是当目标任务的训练数据有限时。在我们的工作中,我们试图了解这种训练策略对下游模型泛化特性的影响。更具体地说,我们提出以下问题:预训练分布的属性如何影响微调模型的鲁棒性?我们探索的属性包括预训练分布的标签空间、标签语义、图像多样性、数据域和数据量。我们发现影响下游有效鲁棒性的主要因素 [44] 是数据量,而其他因素的重要性有限。例如,将 ImageNet 预训练类别的数量减少 4 倍,同时将每个类别的图像数量增加 4 倍(即保持总数据量固定)不会影响微调模型的鲁棒性。我们展示了从各种自然和合成数据源中提取的预训练分布的发现,主要使用 iWildCam-WILDS 分布转变作为稳健性测试。
逐渐的域适应性(GDA),其中为学习者提供了辅助中间域,在许多情况下已经在理论上和经验上研究了。尽管在关键安全方案中起着至关重要的作用,但GDA模型的对抗性鲁棒性仍然没有探索。在本文中,我们采用了有效的渐进自我训练方法,并用副本自我训练(AST)替换香草自我训练。AST首先预测未标记的数据上的标签,然后对手在伪标记的分布上训练模型。有趣的是,我们发现逐渐的AST不仅提高了对抗性的准确性,而且可以提高目标域的清洁准确性。我们揭示这是因为当伪标签包含一部分不正确标签时,对抗性训练(AT)的性能要比标准训练更好。因此,我们首先介绍多类分类设置中逐渐AST的概括误差界限。然后,我们使用子集总和问题的最佳值在真实分布和伪标记分布上的对抗误差上桥接标准误差。结果表明,在具有不正确的伪标签的数据上,可能会获得比标准培训更紧密的结合。我们进一步提出了有条件的高斯分布的一个例子,以提供更多的见解,说明为什么逐渐的AST可以提高GDA的清洁精度。
人们普遍认为,通过了解纠缠谱的统计特性可以预测一般电路中纠缠的动态。我们通过对具有相同统计量的状态应用由不同组局部门生成的类似 Metropolis 的纠缠冷却算法来测试这一假设。我们采用一个独特模型的基态,即具有横向场的一维伊辛链,但属于不同的宏观相,如顺磁相、磁序相和拓扑受挫相。令人吃惊的是,我们观察到纠缠动力学不仅强烈依赖于不同的门组,还强烈依赖于相位,这表明不同相可以拥有不同类型的纠缠(我们将其描述为纯局部、类 GHZ 和类 W 态),对冷却过程的恢复程度也不同。此外,在某些情况下,我们观察到算法会产生扰乱效应,该算法会在不遵循纠缠熵体积定律的状态下产生 Wigner-Dyson 纠缠谱统计。我们的工作强调了这样一个事实:仅凭纠缠谱的知识不足以确定其动态,从而证明了其作为表征工具的不完整性。此外,它还显示了局部性和非局部约束之间的微妙相互作用。
在较高的生物体中,单个细胞通过表观遗传调节(例如基因表达调节)对信号和扰动做出反应。然而,除了移动其转录曲线外,细胞的适应性响应还可以导致不同细胞类型的比例变化。最近的方法(例如SCRNA-SEQ)允许在单细胞水平上询问表达,并可以量化复杂组织样品中的单个细胞类型簇。为了识别显示不同生物条件之间差异组成的簇,最近引入了差异比例分析。然而,严重缺失了用于重复和未复制的单细胞数据集的生物信息学工具。在本手稿中,我们提出了Scanpro,这是一种用于比例分析的模块化工具,无缝集成到Python环境中广泛接受的框架中。scanpro是快速,准确的,可以不重复支持数据集,并且旨在由生物信息学专家和初学者使用。
摘要 - 脑启发的超维度计算(HDC),也称为矢量符号结构(VSA),是一种急剧的“非von neumann”计算方案,该方案模仿人脑功能以处理信息或使用抽象和高维模式来处理信息或执行学习任务。与深神经网络(DNN)相比,HDC显示出诸如紧凑的模型大小,能量效率和少量学习的优势。尽管有这些优势,但HDC的一个不足的区域是对抗性的鲁棒性。现有的作品表明,HDC容易受到对抗性攻击的攻击,在这种攻击中,攻击者可以在原始输入中添加少量扰动到“傻瓜” HDC模型,从而产生错误的预测。在本文中,我们通过开发一种系统的方法来测试和增强HDC对对抗性攻击的鲁棒性,系统地研究HDC的对抗性鲁棒性,并具有两个主要成分:(1)TestHD,这是一种可以为给定的HDC模型生成高素质高素质的测试工具,该工具可以为给定的HDC模型生成高素质的高素质数据; (2)GuardHD,它利用TestHD生成的对抗数据来增强HDC模型的对抗性鲁棒性。testHD的核心思想建立在模糊测试方法之上。我们通过提出基于相似性的覆盖率度量来定制模糊方法,以指导TestHD连续突变原始输入,以生成可能触发HDC模型不正确行为的新输入。由于使用差异测试,TestHD不需要事先知道样品的标签。为了增强对抗性鲁棒性,我们设计,实施和评估GuardHD以捍卫HDC模型免受对抗数据的影响。GuardHD的核心思想是一种对抗探测器,可以通过测试HDD生成的对抗样本训练。在推断期间,一旦检测到对抗样本,GuardHD将用“无效”信号覆盖词典结果。我们评估了4个数据集和5个对抗性攻击方案的提议方法,具有6种对抗生成策略和2种防御机制,并相应地比较了性能。GuardHD能够区分精度超过90%的良性和对抗性输入,比基于对抗性训练的基线高达55%。据我们所知,本文在系统地测试和增强对这种新兴脑启发的计算模型的对抗数据的鲁棒性方面提出了第一个全面的努力。索引术语 - 远程计算,差异绒毛测试,对抗攻击,强大的计算