玛丽在弗吉尼亚大学和伦敦建筑协会学习建筑学,并于 1988 年毕业。她在 Foster + Partners 工作了十多年,是那里的首批女性合伙人之一,并领导了包括毕尔巴鄂地铁(1995 年)和杜伊斯堡微电子中心(1996 年)在内的项目的设计团队。1999 年,玛丽加入 Walters & Cohen 建筑事务所担任董事,负责金丝雀码头的豪华水疗中心和住宅项目。2002 年,玛丽对景观建筑和建筑环境之间的关系产生了浓厚的兴趣,加入了 Gustafson Porter。2011 年,她成为创始合伙人,自 2017 年 1 月起,Gustafson Porter 更名为 Gustafson Porter + Bowman,以表彰玛丽的贡献。
7美联储系统的委员会“了解美联储的监督”(“审查员在储备银行和董事会工作人员的审查员之间有什么区别?监督是董事会的函数,储备银行在董事会的授权授权下进行监督。董事会和后备银行的工作人员都在执行监督功能方面发挥着关键作用,但该角色因指定银行的监督小组而异。LISCC监督由董事会负责,审查员由董事会和储备银行雇用。对于所有其他计划,考试是由储备银行的工作人员进行的,董事会工作人员参与了水平练习和关键决定。对于LISCC以外的其他有监督团体的银行,董事会工作人员设定了对储备银行员工如何进行考试的期望,进而对储备银行监督进行监督以确定监督的执行程度。
由 PACHON IBAÑEZ MARIA EUGENIA - 48806201V 数字签名 识别名称 (DN):c=ES、serialNumber=IDCES-48806 201V、givenName=MARIA EUGENIA、sn=PACHON IBAÑEZ、cn=PACHON IBAÑEZ MARIA EUGENIA - 48806201V 日期:2020.04.23 09:13:44 +02'00'
摘要 Öz 目的:近年来,许多重要细菌群落对抗生素的耐药性不断增加,导致人们对噬菌体分离和表征以及噬菌体不断扩大的临床潜力的文献兴趣日益浓厚。考虑到抗菌素耐药性特征,分离用于治疗鲍曼不动杆菌感染的噬菌体、确定其作用谱并进行表征非常重要。本研究旨在从环境水源中分离针对目标微生物鲍曼不动杆菌的特异性噬菌体。材料和方法:研究了 16 种不同的环境水样作为噬菌体的潜在来源。以具有多重耐药性的鲍曼不动杆菌临床分离株作为宿主细菌。使用单噬斑分离法分离针对目标细菌的特异性噬菌体。在体外研究期间,使用双琼脂法增加分离噬菌体的滴度,并评估其噬斑形态和宿主特异性。结果:噬菌体 vB_KlAcineto13 仅对目标细菌表现出溶解活性,不会感染其他细菌分离株。结论:根据本研究的结果,可以得出结论,噬菌体 vB_KlAcineto13 的宿主范围较窄,不会感染宿主细菌以外的其他测试细菌。然而,特性研究可能会提供有关噬菌体的更多详细信息。
摘要:抗菌素抵抗(AMR)在全球范围内对健康,社会,环境和经济部门构成了显着威胁,并且需要认真关注解决这一问题。鲍曼尼氏杆菌在传染性细菌中被赋予了头等大事,因为它几乎对所有抗生素类别和治疗选择都具有广泛的耐药性。耐碳青霉苯甲酸杆菌的baumannii被分类为世界卫生组织(WHO)优先级的抗生素耐药菌细菌的重点清单之一。尽管可用的遗传操纵方法在鲍曼尼曲霉的实验室菌株中取得了成功,但在新获得的临床菌株中使用时,它们受到限制,因为这种菌株的AMR水平高于用于选择它们进行基因操作的AMR。最近,CRISPR-CAS(群集定期间隔短的短粒子重复序列/CRISPR相关蛋白)系统已成为基因组编辑的最有效,最有效,最精确的方法之一,并提供了靶标针对AMR基因在特定的细菌菌株中的AMR基因。基于CRISPR的基因组编辑已成功应用于各种细菌菌株中以对抗AMR。但是,在鲍曼曼尼(A. Baumannii)中尚未广泛探索该策略。本评论提供了详细的见解,了解CRISPR-CAS使用对A. Baumannii中与AMR相关的基因操纵的进度,现有情况和未来潜力。
1 墨西哥国立自治大学医学院实验医学研究单位感染学、微生物学和临床免疫学实验室,墨西哥城 06720,墨西哥; juliamorenomanjon@gmail.com(JM-M.); catalina_gayosso@yahoo.com.mx(CG-V.); joseluis_f@hotmail.com (JLF-V.) 2 墨西哥国家政治科学研究所生物科学研究生院医学细菌学实验室,墨西哥城 11350,墨西哥 3 墨西哥国立自治大学遗传进化项目,库埃纳瓦卡 62209,墨西哥; iago@ccg.unam.mx(SC-R.); vmateo@lcg.unam.mx (VM-E.) 4 牛津大学生物系,牛津 OX1 3SZ,英国; keith.jolley@biology.ox.ac.uk (KAJ); martin.maiden@biology.ox.ac.uk (MCJM) * 通信地址:sgiono@yahoo.com (SG-C.); alcantar@unam.mx (MDA-C.)
NP类问题;计算语言学,包括各种自然语言文字处理任务;新编程语言的创建;操作系统的架构分析和使用,高性能计算系统上的应用软件;计算机网络和通信的开发,分析和管理;三维环境(3D房间)数据的可视化,包括工程计算结果;复杂信息系统的开发和系统维护,具有特殊的处理算法,包括地理信息,测试和培训系统制造技术学院
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本于2024年10月19日发布。 https://doi.org/10.1101/2024.10.19.619093 doi:Biorxiv Preprint
肽聚糖 (PG) 在大多数细菌中是必需的。因此,它经常成为各种攻击的目标,包括通过 VI 型分泌系统 (T6SS) 的细菌间攻击。本文中,我们报告了革兰氏阴性细菌鲍曼不动杆菌菌株 ATCC 17978 在稳定期产生、分泌并将非规范 d -氨基酸 d -赖氨酸掺入其 PG 中。我们表明,PG 编辑通过提供针对各种细菌竞争对手的肽聚糖靶向 T6SS 效应物的免疫力,提高了鲍曼不动杆菌在细菌战中的竞争力。相反,我们发现 d -Lys 的产生不利于致病机制,至少部分原因是人类酶 d -氨基酸氧化酶 (DAO) 的活性,它会降解 d -Lys 并产生对细菌有毒的 H 2 O 2。系统发育分析表明,鲍曼不动杆菌的最后共同祖先具有产生 d -Lys 的能力。然而,这种特性已独立丧失多次,可能反映了鲍曼不动杆菌作为人类病原体的进化。