在一个令人愉快的冬季早晨,年级前的学生欢乐地庆祝“橙色日”,穿着鲜艳的橙色阴影。他们在探索前面的橘子时互动了感官,将其连接到音声 /o /。将手指伸到皮肤上,他们使用触感感觉到了它的质地 - 光滑或粗糙 - 热情,他们吸入了柑橘味,决定它是甜还是酸味。展示了精细的运动技能,年轻的学习者小心地剥离了橙子,巧妙地揭示了内部多汁的片段。笑声充满了空气,有些人享受着果汁的感觉,他们的手指从手指上滴下。最后,学生们品尝了切片,通过分享的安静对话时刻创造出一种友善的感觉。这次庆祝活动不仅使他们沉浸在感官经历中,而且还鼓励了朋友之间的分享和社交互动。
纽约皇后区——忘掉城堡和机动小丑吧——参观纽约科学馆的火箭公园迷你高尔夫球场时,玩家需要利用火箭科学才能通过这个迷你高尔夫球场。背景中隐约可见两枚真正的 NASA 火箭,火箭公园迷你高尔夫球场揭示了指导宇宙飞船路径的运动和重力定律同样控制着地球上高尔夫球的运动。该展览由 Lee H. Skolnick 建筑设计合伙公司设计,采用了鲜艳的色彩和图形,让人想起 60 年代的太空时代。“我们真的很享受将‘火箭科学’带到地球上的挑战,让所有年龄段的人都感到兴奋和愉悦,即使他们学习的是真正的物理!”美国建筑师学会院士兼 Lee H. Skolnick 建筑设计合伙公司负责人 Lee H. Skolnick 说道。玩家将在九个洞中推杆,探索推进、推力、重力、逃逸速度、发射窗口、重力辅助等关键科学概念:
木制作物,以其营养和药用价值而闻名,包括各种种类和品种,其中许多物种富含花青素。这些氟中的色素不仅有助于甘蓝植物的鲜艳颜色,而且还具有明显的抗氧化剂,抗炎性和神经保护特性。本综述对花青素在甘蓝蛋白作物中的分布,成分和健康益处提供了深入的分析,强调了它们在食品工业和医学中的潜在应用。我们讨论了多种甘蓝组织中花青素的积累模式,遗传和环境因素对浓度的影响以及酰化对其稳定性和生物活性的影响。本次审查还探讨了胸腺花青素的抗氧化能力和心脏保护作用,以及它们在防止肝和肾脏损伤和促进神经保护作用方面的作用。此外,我们研究了花青素作为天然食品着色剂的使用,并将其整合到智能包装中,以实时监测食物新鲜度。我们的发现强调了胸腺花青素的多方面收益,将它们定位为功能性食品和可持续食品系统开发的关键组成部分。
物理学生物学系在2023-2024学年中幸存下来,并带来了鲜艳的色彩。该部组织了一次国际材料科学会议和一项关于实验天文学的国家研讨会,以促进物理学研究工作。部门组织了七位客座讲师,在各个物理学分支机构工作的资源人员都激发了学生的发展,并向他们解释了物理学的发展和机会。为学生组织了两次对Cecri,Karaikudi和太阳能天文台,Kodeikanal和Thumba Rocket发射台的教育之旅的工业访问。物理学系的学生通过物理协会组织了六项教育活动,其中包括一场内部竞争竞赛内部 - 2023年和一项大学间物理竞赛Physaac - 2024年,以认可学习物理学的乐趣和快乐。基于载体的特殊讲座和面向载体的计划通过物理部门提供,其中许多来自该系的学生以及学院的其他部门受益。特别是在Arul Anandar学院的PG&Research系Arul Anandar College,M。Antony博士的PG&Research系提供了“手机硬件技术员”的增值课程,
摘要本文旨在在本综述中及其病因,病理生理学和治疗。糖尿病被认为是从胰岛素作用的缺乏和被认为是胰岛素分泌的二人组中随之而来的低血糖的慢性疾病。此外,1型是胰腺胰岛细胞自动免疫的结果。由于生活水平的变化,习惯改变,锻炼的缺乏以及衰老而缺乏胰岛素或分泌的对抗,但最相关和普遍的原因之一是生活方式的改变以及食物习惯的变化以及日常生活的压力。干细胞疗法是一种昂贵的治疗方法,由于道德问题,获得干细胞也很困难,并且可用性也较少。目前可用于1型的疾病是胰岛素供应疗法,但也与许多障碍有关。高级替代品(如胰岛)在恢复葡萄糖水平方面表现出富有成果的结果。此外,在严重的1-DMM中,由于其成本高,而不是经济过程,捐助者的短缺等,已被划定。替代了从人类多能干细胞(HPSC)分化获得的β样细胞(HPSC)也表现出鲜艳的颜色结果并引起了人们的关注,但是在干细胞疗法中,获得β细胞以及完全胰岛素的分泌具有决定性。
摘要:自然界中的鲜艳色彩源于光的干扰与周期性的纳米结构,从而产生结构色。尽管这种生物光子结构长期以来一直引起人们对昆虫和植物的兴趣,但在其他生物体中,它们鲜为人知。在聚集单细胞生物的Amoebozoa王国中,在菌丝菌(Myxomycetes)中观察到结构颜色,这是一种进化的变形虫,形成了宏观的真菌样结构。以前的工作将二茶叶藻的闪闪发光与薄膜干扰有关。使用光学和超微结构表征,我们在这里研究了22种的结构颜色的发生,这些物种代表了两个主要进化进化枝,包括14个属。所有研究的物种均显示薄膜的干扰,在壁膜上产生颜色,其色调分布在整个可见范围内,这些色素通过色素吸收而改变。在Metatrichia vesparium的化合物peridium中观察到密集填充钙的壳的白色反射层,其形成和功能仍然未知。这些结果提出了有关粘液菌中薄膜结构颜色的生物学相关性的有趣问题,这表明它们可能是其生殖周期的副产品。
仿生材料的开发灵感来源于具有非凡 10 特性或外观的生物材料和生物体,例如出色的机械强度和韧性、自清洁、自修复、鲜艳的色彩 11 等,以开发具有先进功能的材料和产品。珍珠层就是这样一种非凡的灵感来源,它形成 12 贝壳的内层,通常被称为珍珠母。珍珠层由 95 vol% 的脆性无机矿物 13(CaCO 3 )和 5% 的有机聚合物组成,作为砖和砂浆结构,但其断裂功比纯组成矿物高出约 3000 倍 14。模仿珍珠层这种高强度和高断裂韧性的理想组合,为生产替代、可持续的高性能结构和功能材料铺平了道路。 16 最近的研究进展促成了受珍珠层启发的分级结构纤维、薄膜和块状复合材料的制造。本综述讨论了珍珠层形成的化学性质、实体结构的细节以及强化和变形机制。此外,我们还概述了受珍珠层启发的材料的合成工艺和应用的最新趋势和发展。我们重点介绍了分级复合材料,并简要讨论了通过模仿珍珠层的自然形成而合成的人造碳酸盐。21
你有没有想过孔雀羽毛的鲜艳蓝色或甲虫身上闪闪发光的金属几丁质?这些自然奇观就是结构色的例子——微观结构产生鲜艳持久色调的现象。受到这些奇迹的启发,日本的一个研究小组一直在探索结构色。他们早期的工作发现,用黑色素颗粒制备结构色材料模仿了孔雀羽毛的着色机制。在此基础上,该团队着手开发一种涂层材料,利用黑色素颗粒捕捉结构色的光彩,即使从不同角度观看也能产生非彩虹色。研究小组包括日本千叶大学理工学院的 Michinari Kohri 教授和 Yui Maejima 女士,他们与武田胶体技术咨询有限公司的 Shin-ichi Takeda 博士和国家材料科学研究所的 Hiroshi Fudouzi 博士合作。他们的研究成果于 2024 年 12 月 18 日发表在《大分子反应工程》上。Kohri 博士描述了他进行这项研究的动机,“多年来,我们一直在研究受自然生物启发的基于黑色素的结构色材料。我们的动机是通过开发快速创造结构色并添加防水等功能特性的方法,使这些材料更加实用。” 为了实现这一目标,该团队准备了三种不同直径的聚苯乙烯颗粒。然后,他们添加了一层聚多巴胺(改性黑色素颗粒),然后通过迈克尔加成反应添加具有疏水性的具有 18 个碳原子的烷基(十八烷基)。在该反应中,带负电荷的化学基团添加到 α,β-不饱和羰基化合物中,以引入增强防水性的疏水基团。这是在不依赖疏水性但会引起重大环境问题的氟化合物的情况下实现的。使用时域核磁共振 (TD-NMR) 方法确认了颗粒的疏水性。处理完颗粒后,它们会分散在己烷中,从而可以快速高效地应用于玻璃和三聚氰胺层压板等基材上。干燥后,涂层的接触角超过 160 度,色调单一,表面自洁,呈现出荷叶效应,水滴在材料上形成水珠并滚落,不会留下残留物。研究发现,用十八烷基涂层获得的疏水性黑色素颗粒的疏水性几乎与用氟化合物涂层的颗粒相同,而氟化合物具有高疏水性。第一作者 Maejima 女士强调了这项研究的独特发现,她指出,“我们发现,通过将粒子表面的疏水性与粒子的分级组装结构相结合,可以实现超疏水结构彩色涂层,而这一切只需几分钟即可完成。”该团队专注于创建一种简单且可扩展的方法,确保涂层可以在几分钟内完成,而无需复杂的设备或工艺。前岛女士评论了他们发现的实用性:“这项技术有可能成为下一代涂层材料,非常适合墙纸或户外表面等应用,而无需依赖会随着时间而褪色的颜料。它的简单性和效率使其非常适合工业用途。”
轻薄、时尚、性能卓越——联想 Q24i-20 显示器不仅能满足您的所有需求,还能满足您的更多需求。23.8 英寸 FHD(1920 x 1080)超大平面转换显示屏可满足您的所有需求——无论您是学生还是在家办公的专业人士。借助 120% sRGB 色彩空间显示屏,即使从广视角也可以看到鲜艳的色彩。该显示器配有时尚的镀铬高度可调支架,可提供极致的观看舒适度。其独特的设计是一项非凡的工程壮举,兼具风格和功能性。此外,支架还配有一个方便的集成手机支架,可安全放置您的智能手机。它采用自然低蓝光技术(经 TÜV Eyesafe 和 TÜV Hardware Low Blue Light 认证),可减少有害蓝光,不会产生任何色彩失真,并且无需任何设置,对眼睛无害。这款显示器采用超薄的 7.1 毫米外形,简约而美观。配备强劲的双 3W 扬声器系统,让您获得身临其境的体验。这款显示器在软件方面也非常强大。它与联想 Artery 软件兼容¹,可让您快速轻松地调整显示器控件。现在,您可以校准显示器显示性能、选择高级显示设置并定义颜色范围。查看联想 Q24i-20。您不太可能想看看其他产品。
颜料和染料。[5]这种结构着色可以提供各种有吸引力的功能,包括对褪色的内在阻力,出色的耐用性,在直射的阳光下鲜艳的色彩以及高分辨率图像的可能性。[4-6]与动态调整的手段相结合,结构颜色显示出智能标签和电子纸的潜力,[7]有望超过功耗,广泛的颜色范围,紧凑的设备结构和高开关速度。[2,8]最新的促进结构颜色调整或关闭开关的努力将光学纳米腔与导电聚合物结合在一起,其光学透明度可以通过电化学进行控制。[1,9,10]相同的氧化还原依赖性使导电聚合物在没有空腔的情况下流行,但通常仅限于单色功能。[11–13]作为例如,流行的导电聚合物PEDOT(Poly [3,4-乙二醇二苯乙烯])仅在不同的蓝色阴影之间开关,而实际应用也可以覆盖光谱的其他部分。[14]在这里,我们解决了这个问题,并表明单色导电聚合物PEDOT:甲二甲酸酯(PEDOT:TOS,请参见图1 B中的化学结构),如果以准确的纳米级厚度沉积在金属镜子上(图1A中的图表),则可以在整个可见的颜色中产生颜色。我们实现了如此厚度控制