https://doi.org/10.55248/gengpi.5.0124.0328 [4] Brynjolfsson,E。,&McAfee,&McAfee,A.(2014)。第二个机器时代:在精彩技术时期的工作,进步和繁荣。WW Norton&Company。 [5] Danaher,J。 (2019)。 自动化和乌托邦:人类在没有工作的世界中繁荣起来。 哈佛大学出版社。 [6] Domingos,P。(2015)。 主算法:对最终学习机器的追求将如何重制我们的世界。 基本书籍。 [7] Venkatapuram,S。S.(2024)。 鲨鱼标记跟踪 - 使用bezier算法推断:增强对迁移模式的理解。 国际研究出版与评论杂志,5(1),4350–4354。 https://doi.org/10.55248/gengpi.5.0124.0327 [8] Etzioni,O。,&Etzioni,A。 (2017)。 将伦理纳入人工智能。 《道德杂志》,21(4),403-418。 [9] Floridi,L.,Cowls,J.,Beltrametti,M.,Chatila,R.,Chazerand,P.,Dignum,V。,...&Schafer,B。 (2018)。 AI4PEOPLE-一个良好的人工智能社会的道德框架:机遇,风险,原则和建议。 思维和机器,28(4),689-707。 [10] Jordan,M。I.和Mitchell,T。M.(2015)。 机器学习:趋势,观点和前景。 Science,349(6245),255-260。 [11] Kaplan,J。和Haenlein,M。(2019)。 Siri,Siri,我手中:谁是土地上最公平的? 关于人工智能的解释,插图和含义。 业务视野,62(1),15-25。WW Norton&Company。[5] Danaher,J。(2019)。自动化和乌托邦:人类在没有工作的世界中繁荣起来。哈佛大学出版社。 [6] Domingos,P。(2015)。 主算法:对最终学习机器的追求将如何重制我们的世界。 基本书籍。 [7] Venkatapuram,S。S.(2024)。 鲨鱼标记跟踪 - 使用bezier算法推断:增强对迁移模式的理解。 国际研究出版与评论杂志,5(1),4350–4354。 https://doi.org/10.55248/gengpi.5.0124.0327 [8] Etzioni,O。,&Etzioni,A。 (2017)。 将伦理纳入人工智能。 《道德杂志》,21(4),403-418。 [9] Floridi,L.,Cowls,J.,Beltrametti,M.,Chatila,R.,Chazerand,P.,Dignum,V。,...&Schafer,B。 (2018)。 AI4PEOPLE-一个良好的人工智能社会的道德框架:机遇,风险,原则和建议。 思维和机器,28(4),689-707。 [10] Jordan,M。I.和Mitchell,T。M.(2015)。 机器学习:趋势,观点和前景。 Science,349(6245),255-260。 [11] Kaplan,J。和Haenlein,M。(2019)。 Siri,Siri,我手中:谁是土地上最公平的? 关于人工智能的解释,插图和含义。 业务视野,62(1),15-25。哈佛大学出版社。[6] Domingos,P。(2015)。主算法:对最终学习机器的追求将如何重制我们的世界。基本书籍。[7] Venkatapuram,S。S.(2024)。鲨鱼标记跟踪 - 使用bezier算法推断:增强对迁移模式的理解。国际研究出版与评论杂志,5(1),4350–4354。https://doi.org/10.55248/gengpi.5.0124.0327 [8] Etzioni,O。,&Etzioni,A。(2017)。将伦理纳入人工智能。《道德杂志》,21(4),403-418。[9] Floridi,L.,Cowls,J.,Beltrametti,M.,Chatila,R.,Chazerand,P.,Dignum,V。,...&Schafer,B。(2018)。AI4PEOPLE-一个良好的人工智能社会的道德框架:机遇,风险,原则和建议。思维和机器,28(4),689-707。[10] Jordan,M。I.和Mitchell,T。M.(2015)。机器学习:趋势,观点和前景。Science,349(6245),255-260。[11] Kaplan,J。和Haenlein,M。(2019)。Siri,Siri,我手中:谁是土地上最公平的? 关于人工智能的解释,插图和含义。 业务视野,62(1),15-25。Siri,Siri,我手中:谁是土地上最公平的?关于人工智能的解释,插图和含义。业务视野,62(1),15-25。[12] Markoff,J.(2015)。爱心恩典的机器:寻求人类和机器人之间的共同点。哈珀·柯林斯(Harper Collins)。[13] McCarthy,J.,Minsky,M。L.,Rochester,N。,&Shannon,C。E.(2006)。1955年8月31日,达特茅斯夏季研究项目的提案。AI杂志,27(4),12-12。 [14] ng,A。 (2016)。 人工智能现在可以做什么也不能做什么。 哈佛商业评论,9(11)。 [15] Nilsson,N。J. (2009)。 寻求人工智能。 剑桥大学出版社。 [16] Russell,S。和Norvig,P。(2016)。 人工智能:一种现代方法。 马来西亚;皮尔逊教育有限公司。 [17] Stone,P.,Brooks,R.,Brynjolfsson,E. 2030年的人工智能和生活。 人工智能一百年研究:2015 - 2016年研究小组的报告。 [18] Suleiman,Y。 (2017)。 人工智能的伦理。 下一步:指数寿命。 BBVA开放的心态。 [19] Tegmark,M。(2017)。 生命3.0:在人工智能时代成为人类。 knopf。 [20] Toby Walsh,S。(2017)。 还活着! 人工智能从逻辑钢琴到杀手机器人。 La Trobe University出版社。AI杂志,27(4),12-12。[14] ng,A。(2016)。人工智能现在可以做什么也不能做什么。哈佛商业评论,9(11)。[15] Nilsson,N。J.(2009)。寻求人工智能。剑桥大学出版社。[16] Russell,S。和Norvig,P。(2016)。人工智能:一种现代方法。马来西亚;皮尔逊教育有限公司。[17] Stone,P.,Brooks,R.,Brynjolfsson,E.2030年的人工智能和生活。人工智能一百年研究:2015 - 2016年研究小组的报告。[18] Suleiman,Y。(2017)。人工智能的伦理。下一步:指数寿命。BBVA开放的心态。[19] Tegmark,M。(2017)。生命3.0:在人工智能时代成为人类。knopf。[20] Toby Walsh,S。(2017)。还活着!人工智能从逻辑钢琴到杀手机器人。La Trobe University出版社。La Trobe University出版社。
了解鱼类寻找猎物和繁殖的地点对于了解其种群动态至关重要(Free、Jensen 等人,2021 年)。体型较大的高级食肉动物,例如通常寿命较长、繁殖力较低的鲨鱼,以表现出非凡的季节性迁徙模式而闻名(Nasby-Lucas、Dewar 等人,2019 年)。这些运动将受到海洋条件的调节,捕食者和猎物物种都会利用海洋洋流、海底水深测量和首选栖息地的环境因素(Chen、Shan 等人,2021 年)来提高个体生存和种群持续或扩张的机会。传统渔业管理决策依赖于目标和兼捕物种的基本生物学信息以及捕捞量和生物量估计值的可用性,以提供资源评估的基础,从而在战略捕捞目标的背景下提出建议(Punt 和 Hilborn 1997,Maunder 和 Punt 2013)。这些目标通常旨在确保在渔民追求捕捞目标时种群不会减少,或者在资源枯竭时促进恢复轨迹的逆转(Dainys、Jakubavičiūtė 等人 2022)。无论如何,在基于模型的评估中,通常会对生长和繁殖做出假设以估计补充参数,从而导致其输出的不确定性。替代的和越来越普遍应用的经验方法也具有不确定性,需要任意选择的参考点作为相对测量值,其保守性根据目标物种已知的生活史特征而变化(Bi、Zhang 等人 2023)。这些策略需要对生物量进行估计或替代测量,通常适用于商业渔业,因为管理涉及对总捕捞量的产出控制(Punt 等人,1997 年;Ovando、Free 等人,2022 年)。这些方法存在问题,并且与适用于休闲垂钓者的每日捕捞量、船只捕捞量或持有量限制相比,它们大多不适用于休闲行业(Ford 和 Gilmour,2013 年)。
加密货币的受欢迎程度呈天文数字上升,并催生了一种革命性的新支付和投资方式。这些由区块链支持的证券不仅成功吸引了华尔街的鲨鱼,也吸引了散户投资者。这种飞速增长导致加密货币和区块链的市值飙升。比特币是有史以来第一个领先的加密货币,其市值已超过 7830 亿美元。到 2023 年,所有加密货币的总市值预计将超过 10877 亿美元。尽管这些数字惊人,但加密货币市场一直在努力解决的一个问题是高波动性。与传统市场一样,加密市场容易因新闻发展和投机而波动,从而加剧价格波动。然而,由于加密市场的流动性短缺,这种影响被夸大了,任何小新闻或猜测都可能导致价格波动。埃隆·马斯克 (Elon Musk) 位列全球最富有的人和最富有的人之列。加密货币市场波动性的最大推动者是埃隆·马斯克,因为他在 Twitter 上有 5800 万粉丝,并且他发布了关于比特币和狗狗币等加密货币的令人费解的推文。在他的几条推文之后,交易量明显高于平常。研究人员认为,社交媒体活动会影响这些动向;因此,像埃隆·马斯克这样的有影响力的人可以显著影响加密货币。该项目旨在研究埃隆·马斯克在 Twitter 上的相关活动及其对加密货币市场的影响。该项目的目标是研究埃隆·马斯克的推文对比特币和狗狗币以及价格预测的影响。为了实现这一目标,该项目提出了各种模型,例如自回归模型、移动平均模型和自回归综合移动平均模型。基于对数似然、修正赤池信息准则和贝叶斯信息准则等各种指标,选择最佳模型来预测未来。
半充气的躲避球击中脸部比露尼想象的要疼得多。老师们从体育馆后台门口爬出来。两个青少年互相扔球。其他高中戏剧系的学生围着他们,欢呼雀跃。两人像野兽一样争夺迷路露营者的花生酱罐子。泰勒捡起孩子们扔给她的十几个球中的一个,狠狠地扔向露尼的脸。露尼后退了一步,用舌头感觉到自己被打破的嘴唇,尝到了血和薄荷润唇膏的味道。“你是个精神病患者泰勒!”“我才是精神病患者?”泰勒尖叫道。她长长的黑发遮住了眼睛,她咬紧牙关,愤怒地盯着露尼。“你怎么能这样?”“这是个意外!我不是故意给你讲错独白的!”露尼看着本克斯先生和桑德斯太太走近,把他们拉开。“你是故意的!这就是为什么没人喜欢你这个疯子!你这个被放到最底下的玉米糖!!你最终会和一个不在乎你的失败者在一起。我信任你!我读了你在所有人面前发表的整段独白。我要给你看一条死鲨鱼,你这个开罗的紫玫瑰!!”泰勒还没来得及投出最后一个球,老师们就赶来把两个女孩分开。泰勒继续战斗。桑德斯夫人竭力把她拉回来。“我想要那个角色!你嫉妒是因为我选了剧本而不是你。”泰勒说。“是的,”露妮大声说道,而不是在心里默念。露妮看着本克斯先生放开她,和桑德斯夫人一起护送泰勒离开。她眼里噙满了泪水。“我希望你失败,这样你就得和我一起出去玩了。”她低声说。“我最好再也见不到你!”泰勒尖叫道。她希望回到泰勒不停谈论的那个沿海城市。她向她展示了自己拍摄的快照。一张是海滩上的阳光,一张是公园中央的一棵大树,还有一只猫头鹰在 101 号公路中间行走。从这些照片,以及当 Luni 和 Taylor 自驾游到那里时,她发现自己陷入了爱河。她不确定这份爱是什么,也不知道这份爱放在哪里。她不想去想这些。只有能和 Taylor 亲近的想法才是最重要的。现在没有希望了。她一点一点地意识到
1生物学系和环境与跨学科科学系,卡尔顿大学,1125年,渥太华博士,渥太华博士,安大略省K1S 5B6,加拿大2,加拿大2野生动物和环境研究系,森林科学学院,森林科学学院,瑞典大学瑞典大学农业科学,乌梅9018333333333333 Birund of Swiformoutial ofiralliapiountialialiantial forightian fornestian forterial of Fircience of Firsopior of Fircience of Firsopi Building, Lund 22362, Sweden 4 Department of Biology, University of British Columbia, 1177 Research Road, Kelowna, British Columbia V1V 1V7, Canada 5 Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena 07743, Germany 6 Department of Ecosystem Services, Helmholtz Centre for Environmental Research – UFZ, Permoserstr, 15, Leipzig 04318, Germany 7 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr, 4, Leipzig 04103, Germany 8 Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, 1125 Colonel By Dr, Ottawa, Ontario K1A 0H3, Canada 9 Department of Integrative Biology, University of Guelph, 50石路e,加拿大安大略省2W1,加拿大10个生态,进化和海洋生物学和海洋科学研究所,加利福尼亚大学,加利福尼亚大学圣塔芭芭拉分校,圣塔芭芭拉,加利福尼亚州,美国加利福尼亚州93106,美国11大西洋鲨鱼探险队,29 Wideview Lane,Bioutiliers Point,Nova scotia and Novery scotia b3Z 0m9拉德布德大学(Radboud University,Houtlaan 4,Nijmegen 6525),荷兰13犹他大学生物学系,犹他大学,257 South 1400 East,盐湖城,盐湖城,UT 84112,UT 84112,美国14号海洋与地球科学学院,南安普敦大学,国家海洋学中心,南安普敦,南安普敦,居民,纽约市。南波西米亚,ceskébudˇEjovice,捷克共和国16海洋追踪网络,科学学院,达尔豪西大学,1355年,牛津街,哈利法克斯,哈利法克斯,新斯科舍省B3H 3Z1,加拿大
Venture Visuals Tom Kranzle // 首席 + 摄影指导 Scott Shiffman // 制片人 + 导演 Chris Mundell // 创意总监 310-882-0017 info@venturevisuals.com - 带陀螺仪稳定器和无线监控的遥控摄像直升机。(由 VV 提供操作员)- 适用于重量不超过 12 磅的摄像机的陀螺仪稳定器。非常适合从 R44 等小型直升机上进行空中拍摄。(需要技术人员或 VV 设施的培训) Luners Pro Sound & Lighting Inc. Grant Macgregor 805-963-7756 grant@lunerssb.com http://www.lunerssb.com/ 629 N. Salsipuedes St, SB, CA 93103 提供全套视听和音频系统。主要品牌包括 EAW、JBL、Meyer Sound、Yamaha、Midas、BSS、Panasonic、Soundcraft、Shure Drawmer、Eiki、Sharp、Sony 等。Movie Quiet 发电机有 350、500、750、1400 和 2500 安培大小可供选择。配电、4 x 4 牵引车、坡道和分线器可在当地使用。On the WAVE Productions Harry Rabin - 所有者/制作人 805-886-2204 harry@seamusic.com http://www.seamusic.com/ 37 Humphrey Rd, Santa Barbara, CA 93108 Santa Barbara,完整的交钥匙设施,可提供现场和远程音频和视频制作服务。从前期制作到后期,所有行业标准格式,包括 HD 1080。租赁设备和工作室空间:高清摄像机、摄影车、摇臂、麦克风、混音器、无线领夹式话筒、斯坦尼康等。有关设备租赁的完整列表,请访问我们的网站:http://www.seamusic.com/rentals 屡获殊荣的编辑:考克斯通讯、探索频道、鲨鱼周、PBS 纪录片、音乐视频、非营利性 PSA'a、教育视频。提供音频工程师、作曲家和制作人。《火线救援》(电视连续剧),FX 网络;《保持节奏》,圣巴巴拉公共教育基金会;《棕鹈鹕》,电影摄制组/泰·华纳海洋中心。SMS 电影、视频和声音 Steve Miller 805-984-1963 Alt: 805-479-6618 stevemillerman@yahoo.com http://www.highdefsound.com/ 1323 San Rafael Ave., Santa Barbara, CA 93109 高清两栖摄像机 HDW-F900 HD 24P 水下系统 - 外壳、摄像机、Fuji 4.5mm
Agersnap, S.、Larsen, WB、Knudsen, SW、Strand, D.、Thomsen, PF、Hesselsøe, M. 等人 (2017)。使用淡水样本中的环境 DNA 监测贵重、信号和窄爪龙虾。PLoS ONE,12(6),e0179261。https://doi.org/10.1371/journal.pone。0179261 Andruszkiewicz, EA、Sassoubre, LM 和 Boehm, AB (2017)。海洋鱼类环境 DNA 的持久性和阳光的影响。PLoS ONE,12(9),e0185043。https://doi.org/10.1371/journal.pone.0185043 Barnes, MA 和 Turner, CR (2016)。环境 DNA 的生态学及其对保护遗传学的影响。保护遗传学,17(1),1 – 17。https://doi.org/10.1007/s10592-015-0775-4 Boulanger, E.、Loiseau, N.、Valentini, A.、Arnal, V.、Boissery, P.、Dejean, T. 等人 (2021)。环境 DNA 宏条形码揭示并解开了地中海海洋保护区的生物多样性保护悖论。英国皇家学会学报 B,288(1949),20210112。https://doi. org/10.1098/rspb.2021.0112 Boussarie, G.、Bakker, J.、Wangensteen, OS、Mariani, S.、Bonnin, L.、Juhel, JB 等人。 (2018)。环境 DNA 揭示了鲨鱼的黑暗多样性。科学进展,4(5),eaap9661。https://doi.org/ 10.1126/sciadv.aap9661 Budd, AM、Cooper, MK、Le Port, A.、Schils, T.、Mills, MS、Deinhart, ME 等人 (2021)。利用环境 DNA 五十年来首次在密克罗尼西亚关岛发现极度濒危的路氏锤头鲨(Sphyrna lewini)。生态指标,127,107649。https://doi.org/10.1016/j.ecolind.2021.107649 Bustin, SA、Benes, V.、Garson, JA、Hellemans, J.、Huggett, J.、Kubista, M. 等人 (2009)。 MIQE 指南:定量实时 PCR 实验发表的最低限度信息。临床化学,55(4),611 – 622。https://doi.org/10.1373/clinchem.2008.112797 Caza-Allard, I.、Laporte, M.、Côté, G.、April, J. 和 Bernatchez, L. (2022)。生物和非生物因素对鱼类环境 DNA 产生和降解的影响:实验评估。环境 DNA,4(2),453 – 468。https://doi.org/10.1002/edn3.266 Collins, RA、Wangensteen, OS、O'Gorman, EJ、Mariani, S.、Sims, DW 和 Genner, MJ (2018)。海洋中环境 DNA 的持久性
•描述如何根据常见的观察特征和基于相似性和差异(包括微生物,植物和动物)将生物分类为广泛的群体•给出了根据特定特征对植物和动物进行分类的理由。先前的学习(学生已经知道并可以做的是什么)知道有一个动物界分为脊椎动物和非脊椎动物。脊椎动物可以分为哺乳动物,鱼类,鸟类,爬行动物和两栖动物。知道有一个植物王国可以分为开花和非开花植物。使用排序树。对脊椎动物进行分类,学会将无脊椎动物的动物分类为无脊椎动物 - 无骨,annelids,annelids,arachnids,rachnids,甲壳类动物,海绵,海胚层和昆虫lo:使用分支的钥匙来对无脊椎动物进行分类的钥匙来分类:从鸟类中分类:鸟类和鸟类的鸟类,鸟类,鸟类,妈妈。将动物的照片排序包括误解 - 海豚,鲸鱼,鸭嘴兽,鲨鱼,蝙蝠,蜜蜂和蜗牛。蜜蜂和蜗牛会在哪里?Know the features of living things are movement, respiration, sensitivity, growth, reproduction, excretion, and nutrition End Goals (what pupils MUST know and remember) • Know Carl Linnaeus as a pioneer of classification • Know to classify flowering plants into grasses, shrubs, cereals, and deciduous trees • Know to classify non-flowering plants into algae, mosses, ferns, and coniferous trees • Know to classify animals which are vertebrates – have backbones - (birds, fish, reptiles, mammals, amphibians) • Know to classify animals which are invertebrates – no backbones- into molluscs, annelids, arachnids, crustaceans, sponges, echinoderms, and insects • Know micro-organisms can be classified into bacteria, viruses, fungi,藻类和原生动物关键词汇无脊椎动物,昆虫,蜘蛛,蜗牛和蠕虫,分支树,分类,环境,环境,代表性,poter,苔藓,蕨类植物,开花植物,针叶树,针叶树,灌木,谷物,麦片,孢子,孢子,孢子,孢子,小型,微生物,核,单核,单粒细胞,酸味,饲料,幼虫,幼虫,饲料,饲养型,幼虫,藻类的用途,食品生产,清洁产品,分解剂,青霉素,酵母,抗生素会议1:审查事先学习回顾:昆虫的生命周期,哺乳动物,两栖动物,爬行动物,爬行动物,两栖动物和鸟类介绍Carl Linnaeus - Carl Linnaeus - 可以将所有生物归为所有生命的东西 - 所有生物都可以使用BINOM alial System(2个名称)(2个名称)(2) https://www.youtube.com/watch?v=-lvunuiot4w bbc教学 - carl linnaeus https://www.youtube.com/watch?v=gb_io-szlgk carl carl carl carl linnaeus自然历史记录博物馆2:recap 2:recap - carl linnaeus是谁?
渔业旁观,与商业或娱乐性的未经使用或未托管的物种的相互作用(Davies等,2009)对许多物种产生负面影响,包括死亡率,使旁观者的减少成为海洋保护和薄纱管理的主要重点2018; Nelms等人,2021年;当旁观物包含受保护的物种,例如海洋哺乳动物,海龟,鲨鱼和海鸟(Moore等,2009; Wallace等,2013; Lewison et al。,2014; Komoroske and Lewison和2015; 2015; 2015; 2015; 2015年;降低旁观可以提高商业曲折的效率和有效性(Richards等,2018; Noaa Fisheries,2022; Senko等,2022),并限制了由于高水平的受保护物种相互作用而导致的填充风险。然而,鉴于大多数bychip的物种的相互作用率低以及受保护物种相互作用的稀有发生率的较低相互作用率,估计杂草捕获的水平可能具有挑战性(McCracken,2004;Amandè等,2012; Martin等,2015; 2015年; Stock等,2019)。渔业管理计划和法规通常需要估算和监视给定层中给定物种的兼容量。根据管辖区的不同,过度的旁观,定义不同,可能会导致调整习惯的监管变化,弯曲齿轮的变化,限制性活动的限制或整个封闭式封闭。1362)。因此,准确,准确地确定在填充中旁观的水平的能力是填充管理的关键组成部分。在美国,《马格努森 - 斯文森渔业保护与管理法》(MSA),濒危物种法(ESA)和海洋哺乳动物保护法(MMPA)(MMPA)适用于旁观物种和填充物,并要求管理机构来监视旁注。在MSA(50CFR§600.350)下,应最小化或避免征用,而受保护的物种兼容不能超过ESA(50 CFR 216.3)下的允许采取或超过MMPA下潜在的生物移除水平(U.S.C.通常,为了实现旁观监测目标,训练有素的钓鱼者观察者被放置在钓鱼容器上,以监视受保护的物种相互作用,并记录捕获和旁捕虫(NOAA Fisheries,20222),因为这些信息不需要记录在日志中。这些观察者收集的数据用于通过各种统计或数学手段来估计填充中的兼例水平。在许多情况下,基于样本的比率估计器(例如广义比率估计器或Horvitz-Thompson估计器)可以提供对旁观的无偏估计(McCracken,2000,2019)。还实施了基于模型的估计,包括通用线性模型(GLM),零插入模型,跨栏模型,贝叶斯模型和广义添加剂模型(GAMS),以说明少数协变量对纤维状雪橇的影响(McCracken,2004; Martin等; Martin等,2015; 2015年; 2015年;从这种方法中估算的临界估计,然后进一步介绍了在给定时期内(通常为一年)对某些物种的兼容限制的过程(Moore等,2009),以及其他下游产品和
1. 简介 大西洋高度洄游物种 (HMS 1 ) 渔业根据《马格努森-史蒂文斯渔业养护和管理法案》(《马格努森-史蒂文斯法案》;16 USC 1801 等)及其修正案进行管理,并与《大西洋金枪鱼公约法案》(ATCA;16 USC 971 等)保持一致。HMS 实施条例位于 50 CFR 第 635 部分。根据《马格努森-史蒂文斯法案》,养护和管理措施必须防止过度捕捞,同时持续实现每种渔业的最佳产量(16 USC § 1851(a)(1))。当确定某个渔业处于或接近过度捕捞状态时,国家海洋渔业局 (NMFS) 必须采取保护和管理措施,防止或终止过度捕捞并重建渔业 (16 USC §§ 1853(a)(10) 和 1854(e))。此外,NMFS 还必须遵守《马格努森-史蒂文斯法案》的 10 项国家标准,包括要求使用最佳科学信息以及考虑对不同州居民、效率、成本、渔业社区、兼捕和海上安全的潜在影响 (16 USC § 1851(a)(1-10))。根据 ATCA,部长(通过 NMFS)应颁布必要且适当的法规,以执行国际大西洋金枪鱼保护委员会 (ICCAT) 通过的具有约束力的建议。自 1999 年颁布《大西洋金枪鱼、剑鱼和鲨鱼联邦渔业管理计划》以及《大西洋旗鱼渔业管理计划》第 1 号修正案(64 FR 29090:1999 年 5 月 28 日)以来,NMFS 实施了一系列专门针对渔具的管理措施,以遵守《马格努森-史蒂文斯法案》和《ATCA》。这些管理措施旨在防止或制止过度捕捞,并尽可能减少兼捕。渔业中的“兼捕”通常指丢弃的鱼或捕捞作业与受保护物种之间的相互作用。根据《马格努森-史蒂文斯法案》,兼捕具体定义为在渔业中收获但未出售或留作个人用途的鱼,包括经济和监管丢弃物(16 USC § 1802(2))。许多管理措施包括限制渔具,以减少对兼捕物种的影响,提高放生后的存活率,限制使用某些渔具以减少丢失和废弃的渔具,并在必要时实现其他目标。虽然每一项管理措施都有助于实现渔业管理和保护目标,但考虑到物种分布、渔具、捕鱼技术、市场条件和捕鱼利益的诸多变化,二十多年来针对特定渔具的措施可能产生了意想不到的后果。这些意想不到的后果可能包括限制捕鱼机会,这反过来又可能限制渔业实现最佳产量的能力。此外,这些意想不到的后果可能会降低渔民调整捕鱼技术以适应不断变化的环境和物种变化的能力