摘要 本研究对在奥卡销售的熏鱼进行了细菌学评价。从五个不同的主要市场购买了五 (5) 个熏鱼样本,每个样本的大小都差不多。通过目视观察销售环境、供应商和产品的清洁度来评估鱼类的卫生程度。使用无菌塑料袋将鱼样运送到实验室,每条熏鱼单独包装并在分析前存放在冰箱中。将每条熏鱼的不同部分捣碎在一起,使用 1g 进行十倍连续稀释,得到一个代表性样品。采用倾注平板法,将平板在 37°C 下孵育 24 小时。24 小时后,进行菌落计数和细菌生化表征。分离的微生物包括金黄色葡萄球菌、铜绿假单胞菌、肺炎克雷伯菌、大肠杆菌和芽孢杆菌属。本研究发现,两个市场中,Ifite awka 市场的微生物活菌数最高,总活菌数为 3.72 x 10 7 cfg,而 Nkwo Amaenyi 熏鱼的微生物活菌数最低,总活菌数为 0,68 x 10 7 cfg。较高的微生物负荷可能是由于熏鱼前后以及熏制过程中周围环境中的微生物污染造成的。为了减少熏鱼中微生物大量生长的现象,应向鱼加工者和公众进行良好的鱼类处理教育。关键词:评估;细菌;隔离;奥卡。1. 引言尼日利亚人是鱼类消费大户,是全非洲最大的鱼类和渔业目标市场。根据粮食及农业组织 [1] 的数据,全世界有超过 3600 万人直接通过捕鱼就业。在尼日利亚,鱼类生产仅占非石油外汇收入的 25%,
非洲鲶鱼C. gariepinus是撒哈拉以南非洲和大多数亚洲国家养殖面积第二大的鱼类。为了解释、理解和管理种群和个体,遗传多样性和种群结构及其量化非常重要。由于非洲鲶鱼C. gariepinus生长速度快、对各种养殖条件的适应能力强以及繁殖力强,在20世纪50年代首次进行了遗传改良,并在20世纪70年代中期成为非洲水产养殖的最佳鲶鱼。在非洲鲶鱼遗传和育种研究中,各种分子标记,包括同种酶标记、mtDNA标记、SNPs标记、RAPD标记、微卫星标记和SDS-PAGE标记已被用来评估遗传相似性和分歧,以确保C. garipinus鱼种的遗传改良和选择性育种计划。遗传多样性评估和种群结构评估也用于量化 C. gariepinus 鱼类种群内部和种群之间的遗传差异。这些对于制定遗传保护和管理战略、可持续管理具有经济价值的水产养殖鱼类(如 C. gariepinus)至关重要。遗传改良和标记辅助选择性育种计划对于广泛了解具有经济价值的品系至关重要。
鲶鱼(Clarias sp.)的动物蛋白质含量足够高,可以满足人体的需要。要想培育出鲶鱼,无论在生产力、外观还是尺寸方面,都需要合适的技术,即CRISPR Cas9基因工程技术。压缩规律间隔短回文重复序列 (CRISPR) 是一种利用 Cas9 酶功能的变化来编辑基因组的现代技术。希望CRISPR技术能够在基因工程领域得到更多的认识和发展。编写本文所采用的方法是对 CRISPR Cas9 在水产养殖中使用的鲶鱼 (Clarias sp) 的发展中进行的文献研究。所用方法是对之前进行的几项研究进行文献研究并进行描述性分析。 CRISPR Cas9 技术可应用于转基因鲶鱼 (Clarias sp.),这得到了先前应用于鲑鱼科 (大西洋鲑)、罗非鱼 (Oreochromis niloticus)、斑马鱼 (Danio reiro) 和鲶鱼 (Ictalurus punctatus) 的研究成功的支持。通过CRISPR Cas 9技术形成转基因鲶鱼可以实现的前景包括加速生长发育、增大骨骼肌,从而增加鲶鱼的体重。
近来,超过 70% 的鱼被熏制作为保存方法。熏制是一种古老的加工方法,至今在尼日利亚仍广泛使用。本研究调查了从两个不同的鲶鱼养殖场获得的熏制鲶鱼中重金属积累和微生物负荷水平,以确定研究期间在奥沃销售的熏制鲶鱼的安全性。样本采集自位于尼日利亚翁多州奥沃地方政府区奥沃的两个农场(农场 1 和农场 2)。鉴定出的微生物包括链球菌属、金黄色葡萄球菌、芽孢杆菌属、克雷伯氏菌属、铜绿假单胞菌和大肠杆菌。样本 A 和 B 的微生物计数如下:链球菌属(90.0 和 60.0)、金黄色葡萄球菌(160.0 和 170.0)、芽孢杆菌属(230.0 和 215.0)、克雷伯氏菌属(110.0 和 120.0)、铜绿假单胞菌(15.0 和 10.0)和大肠杆菌(2.0 和 1.0)。重金属的浓度分别为 Cu(0.001 和 0.000)、Cd(0.222 和 0.002)、Cr(0.840 和 0.670)、Mn(2.33 和 1.99)和 Zn(132.020 和 127.001)。微生物数量最高的是来自样品 A(230.0)和样品 B(215.0)的芽孢杆菌属,而最低的是来自样品 B(1.0)和样品 A(2.0)的大肠杆菌。在重金属中,锌在两个样品中含量最丰富,样品 A(132.020)的浓度高于样品 B(127.001)。铜含量最低,在样品 A(0.001)中几乎检测不到,在样品 B(0.000)中完全检测不到。该研究揭示了鲶鱼养殖场之间的微生物和重金属污染水平差异。它强调监管机构需要实施湿度控制措施并实施策略以减少可能导致熏制鲶鱼产品中细菌生长和重金属污染的人为活动。
在巴查查兰大学,代表团听取了美国驻东盟代表团副团长凯特·雷布霍尔兹的开场致辞,她强调继续开展各种形式的农业研究以应对人口增长和气候变化的重要性。随后,代表团了解了转基因珍珠鲶鱼的研发情况,这种鲶鱼仅经过三代的繁殖,生长速度就达到传统鲶鱼的三倍。演讲结束后,代表团参观了鲶鱼研究池,甚至帮助首席研究员伊布努·迪维·布沃诺喂养鲶鱼。对于成员国来说,这是一次难得的机会,能够在一天之内在同一地区看到植物生物技术和动物生物技术的实例,也是印尼生物技术研究人员大放异彩的机会。
图 1. 养殖鲶鱼(a)、野生粉红鲑(b)和野生红鲑(c)研究地点地图。 ........................................................................................................................... 3 图 2. 养殖鲶鱼(a)、野生粉红鲑(b)和野生红鲑(c)在海产品生产和加工中使用的直接能源资源百分比。按燃料来源分类的电力。 ........................................................................................................... 12 图 3. 阿拉巴马州和密西西比州养殖鲶鱼在孵化场(a)、养成(b)和加工(c)阶段使用的直接能源资源百分比。 ........................................................................... 13 图 4. 替代能源供需情景及其对美国东南部电力部门发电和二氧化碳排放的影响 电力(a)和区域二氧化碳排放(b)的区域发电资源组合。 ........................................................................... 19 图 5. 当前和未来情景及其对养殖鲶鱼的可再生直接能源百分比(绿色)的影响。在阿拉巴马州和密西西比州。.............................................................. 24
在大多数亚洲和撒哈拉以南国家,非洲鲶鱼(Clarias gariepinus)是第二大最常见的养殖鱼类。遗传多样性和种群结构的量化对于解释、理解和管理种群和个体至关重要。非洲鲶鱼(C. gariepinus)由于生长速度快、适应各种养殖条件的能力强、繁殖力强,于 20 世纪 50 年代首次进行了遗传改良,然后在 20 世纪 70 年代中期成为非洲水产养殖的最佳鲶鱼。非洲鲶鱼遗传学和育种研究已使用多种分子标记,如同位素酶、线粒体 DNA、SNP、RAPD、微卫星和 SDS-PAGE 标记来评估遗传差异和相似性,以确保遗传改良和 C. gariepinus 鱼种的选择性育种计划。通过使用遗传多样性和种群结构评估,还可以量化 C. gariepinus 鱼类种群内和种群之间的遗传差异。这些对于制定遗传保护和管理策略、可持续管理具有经济重要性的水产养殖鱼类(如 C. gariepinus)至关重要。遗传改良和标记辅助选择性育种计划对于广泛了解具有经济重要性的品系至关重要。
草鱼 10.5 X 鲢鱼 8.8 尼罗罗非鱼 8.3 XX 鲤鱼 7.7 X 鳙鱼 5.8 卡特拉鱼 5.6 鲫鱼 5.1 颜色 大西洋鲑鱼 4.5 X 颜色,脂肪酸代谢 条纹鲶鱼 4.3 南亚鲮 3.7 X 虱目鱼 2.4 鱼雷鲶鱼 2.3 虹鳟鱼 1.6 X 武昌鲷 1.4 青鱼 1.3 黄鲶 0.9 X 斑点叉尾鲶 - XXX 大型泥鳅 - 颜色 牙鲆 - X 太平洋蓝鳍金枪鱼 - 游泳行为 太平洋牡蛎 - 肌球蛋白功能 赤鲷 - X 白虾 - 几丁质酶功能 南方鲶鱼 - X 虎斑河豚 - X
硬骨鱼类是研究性染色体和性别决定 (SD) 基因的重要模型,因为它们呈现出多种性别决定系统。在这里,我们使用 Nanopore 和 Hi-C 技术对 YY 南方鲶鱼 (Silurus meridionalis) 进行高连续性染色体水平基因组组装。组装长 750.0 Mb,其中重叠群 N50 为 15.96 Mb,支架 N50 为 27.22 Mb。我们还测序并组装了一个 XY 雄性基因组,其大小为 727.2 Mb,重叠群 N50 为 13.69 Mb。通过与我们之前组装的 XX 个体进行比较,我们确定了一个候选 SD 基因。通过对雄性和雌性池进行重新测序,我们在 Chr24 上鉴定了一个 2.38 Mb 的性别决定区 (SDR)。读取覆盖度分析和 X 和 Y 染色体序列比较表明,SDR 中有一个 Y 特异性插入(约 500 kb),其中包含 amhr2 的雄性特异性重复(名为 amhr2y)。amhr2y 和 amhr2 在编码区具有相同的核苷酸同一性(81.0%),但在启动子和内含子区域具有相同的核苷酸同一性,但较低。在雄性性腺原基中的独家表达和诱导雄性到雌性性别逆转的功能丧失证实了 amhr2y 在雄性性别决定中的作用。我们的研究为鱼类中 amhr2 作为 SD 基因提供了一个新的实例,并揭示了不同鱼类谱系中性别决定进化背后的 AMH/AMHR2 通路成员重复的趋同进化。
03.04 新鲜、冷藏或冷冻的鱼片及其他鱼肉(不论是否切碎)。- 罗非鱼(Oreochromis spp.)、鲶鱼(Pangasius spp.、Silurus spp.、Clarias spp.、Ictalurus spp.)、鲤鱼(Cyprinus carpio、Carassius carassius、Ctenopharyngodon idellus、Hypophthalmichthys spp.、Cirrhinus spp.、Mylopharyngodon piceus)、鳗鱼(Anguilla spp.)、尼罗河鲈鱼(Lates niloticus)及蛇头鱼(Channa spp.)的鲜或冷藏鱼片: