摘要。trichodina sp。是一种在鱼类中引起滴虫病(发痒)的寄生虫。控制trichodina sp。在养鱼中一直在使用化学药品。这项研究旨在评估丁香(Syzygium芳香族)作为白色鲷鱼(Lates Calcarifer)的Trichodina的抗寄生虫的潜力。在体外抗寄生虫活性测试中使用了4种与50、70、100和130 ppm浓度的煮丁香水的处理方法,并使用5 ppm的福尔马林和使用无菌海水进行阴性对照。体内抗寄生虫测试使用了4种处理,即以70、100、100、130 ppm和1个对照处理的浓度进行3种处理,而无需煮丁香。体外抗寄生虫测试的结果表明,Trichodina sp。的死亡率。与阴性对照相比,用煮丁香水处理的处理显着增加(p <0.05),在100、130 ppm的浓度和阳性对照的处理之间并不显着。体内测试的结果表明,煮丁香水的处理能够降低Trichodina sp的平均强度。在白鲷鱼中。在沸腾的丁香水处理浓度之间,抗寄生虫功效值没有显着差异(p <0.05)。这项研究的结果可以是利用丁香作为由寄生虫Trichodina sp引起的鱼类疾病的替代性抗寄生虫的基础。关键词:水产养殖,丁香,骨s,lates钙质,Trichodina sp。简介。水产养殖的成功指标是实现快速鱼类生长和高存活率的实现,从而提高了生产价值(Ode等人2023a)。重要的水产养殖商品之一是白鲷鱼(Lates Calcarifer),目前在印度尼西亚的所有沿海水域都种植。白人鲷鱼的优势包括快速增长,高经济价值和对环境变化的高容忍度。海洋鱼类培养的主要限制是由于疾病攻击而导致的鱼死亡率。鱼类疾病会导致发育迟缓,较长的饲养期,高饲料转化率,低库存密度和死亡率,这会导致产量下降和经济损失(Ode 2014)。trichodina sp。是一种在鱼类中引起滴虫病(发痒)的寄生虫。该寄生虫是在种子和长大的阶段,是白鲷鱼水产养殖中的疾病来源之一。Trichodina sp的控制。是使用甲基蓝,孔雀石绿色,福尔马林和povidone-碘(Betadine)等化学物质进行的(Agustina等,2019)。连续使用不适当剂量的化学物质会导致鱼肉中抗生素残基的积累,这可能威胁到消费者健康。此外,将化学药品用于鱼类处理也会恶化水质并污染环境(管理2018; Soares等人,2017年)。
图 2 大脑形态。(a)为计算大脑区域体积而准备的椭圆体大脑图像:T,端脑;OT:视顶盖;Cb:小脑;Hy,下丘脑;Bs,脑干;W,宽度;H,高度;L,长度。(b)对数转换和标准化身体尺寸 (SL) 的对数转换大脑测量值的回归线和 95% 置信区间 (N = 43)。(c)从统计模型中提取的估计值和 95% 置信区间,作为社会地位和性别的函数,并根据身体尺寸 (SL) 进行校正。*p < .05。
太平洋中的深海纹状会具有强大的商业,文化和娱乐价值,尤其是鲷鱼(Lutjanidae),这些价值(Lutjanidae)构成了大部分捕捞量。然而,由于数据的稀缺,管理这些遗迹是具有挑战性的。立体声诱饵的远程水下视频站(BRUV)可以提供有关鱼类股票的有价值的定量信息,但是手动处理大量视频是耗时的,有时甚至是不现实的。为了解决这个问题,我们使用了基于区域的卷积神经网络(更快的R-CNN),这是一种深度学习体系结构来自动检测,识别和计算BRUV中的深水鲷鱼。视频是在新喀里多尼亚(南皮林)收集的,深度为47至552 m。使用在6,364张图像中观察到的11个深水鲷鱼物种中的12,100个注释的数据集,我们为具有舒适注释的6种物种获得了良好的模型性能(F-Measures> 0.7,最高0.87)。视频中最大丰度的自动和手动估计之间的相关性很高(0.72 - 0.9),但较快的R-CNN显示出低估的偏见。一种半自动协议,我们的模型在处理BRUV镜头时支持手动观察者,改善了性能,与手动计数的相关性为0.96,对于某些关键物种,则具有0.96的相关性和完美的匹配(r = 1)。此模型已经可以帮助手动观察者半自动地处理BRUVS录像,并且当更多培训数据可用以降低假否定率时,肯定会改善。这项研究进一步表明,在海洋科学中使用人工智能是进步的,但对未来有必要。
为了更好地了解哪些药物可能对鱼类构成风险,我们在德国、捷克共和国和英国的 18 个地点捕获的野生鲷鱼、鲢鱼和斜齿鳊的血浆中分析了代表 23 类的 94 种药物。基于对人类的横向研究,我们评估了每种测量药物在鱼中发生药理作用的风险。在鱼血浆中发现了 23 种化合物,捷克共和国的鲢鱼中含量最高。德国鲷鱼中没有一种药物的含量可检测到,而泰晤士河的斜齿鳊的药物浓度大多较低。对于两种药物,四条捷克鱼的血浆浓度高于服用相应药物的人类患者血液中的浓度。对于另外九种化合物,12 条鱼的测定浓度超过了相应人类治疗血浆浓度的 10%。大多数确定有明显药理作用风险的药物都针对中枢神经系统。这些药物包括氟哌噻吨、氟哌啶醇和利培酮,所有这些药物都有可能影响鱼类的行为。除了确定对环境有影响的药物外,研究结果还强调了对水生野生动物体内药物水平进行环境监测的价值,以及需要进行更多研究来建立浓度-反应关系。
本通知启动了《马格努森-史蒂文斯渔业保护和管理法》的基本鱼类栖息地 (EFH) 咨询要求。拟议项目的实施将影响河口基质上游 0.56 英亩的水域和新生湿地,这些水域被虾类、鲷鱼-石斑鱼管理综合体等不同生命阶段的物种所利用。地区工程师的初步判断是,拟议的行动不会对 EFH 或南大西洋渔业管理委员会和国家海洋渔业局 (NMFS) 管理的渔业产生重大的单独或累积不利影响。地区工程师关于项目影响和缓解措施必要性的最终决定将接受 NMFS 的审查和协调。
甚至在基因组测序之前,遗传资源都支持物种管理和育种计划。当前的技术,例如长阅读测序,可以解决复杂的基因组区域,例如富含重复或含量高的GC含量的技术区域。改善的基因组连续性提高了识别结构变异(SV)和转座元素(TES)的精度。我们为澳大利亚亚洲鲷鱼(Chrysophrys auratus)提供了改进的基因组组件和SV目录。新组装更连续,可以鉴定14个centromeres,并从黄鳍seabream中转移26,115个基因注释。与先前的组件相比,注释了35,000个其他SV,包括更大,更复杂的重排。svs和tes表现出偏向染色体末端的分布模式,可能受重组的影响。一些SV与生长相关的基因重叠,强调其意义。这个升级的基因组是研究自然和人工选择的基础,为相关物种提供了参考,并阐明了根据进化形成的基因组动力学。