摘要:非常高分辨率(VHR)卫星图像的出现(少于1 m的空间分辨率)正在生态和保护生物学领域创造新的机会。次级分辨率图像的进步在实地特征的检测和识别方面提供了更大的信心,从而扩大了可能的研究问题领域。迄今为止,VHR图像研究主要集中在陆地环境上。但是,在过去的二十年中,使用该技术检测鲸类动物已经取得了进步。随着计算能力和传感器分辨率的进步,使用VHR卫星图像具有自动检测和分类过程的VHR卫星图像的大规模VHR海洋调查的可行性有所增加。对自动调查的初步尝试显示出令人鼓舞的结果,但需要进一步的发展来确保可靠性。在这里,我们讨论了可以使用VHR卫星图像来解决鲸鱼保护中的紧急问题的未来方向。我们强调了当前对自动检测的挑战,并将该技术的使用扩展到所有海洋和各种鲸鱼。为了实现盆地规模的海洋调查,目前不可行任何传统的测量方法(包括船基和航空调查),未来的研究需要生物学,计算科学和工程学之间的合作努力,以克服目前对该平台使用的挑战。
摘要。要应对污染规范和内燃机的燃烧改善,生产燃料注入喷嘴的高质量孔的直径小于145 µm。当前使用燃油注入喷嘴加工加工钻孔的练习在其可以有效产生的孔的大小和钻孔所需的时间方面受到限制。此外,该工具的成本很高。本文提出了对燃油喷射喷嘴制造的顺序激光和电流微钻技术的调查。通过电放电去除用激光钻出的飞行员孔。发现这种混合过程消除了通常与激光钻探过程相关的改革和热影响区域的问题。与标准的电化加工钻孔相比,新过程允许减少总钻孔时间,因为从电气放电加工中除去材料较少。孔的质量与直接电化加工钻孔一样好。这项技术可节省宝贵的成本和提高燃料喷射器喷嘴的生产能力。
Charles River提供了AI监测服务,可利用Awarion在海面提供情境意识,从而帮助您检测和分类鲸鱼,船只,钓鱼浮标和其他障碍。我们与高度受监管的商业行业合作,在海上风,运输和休闲划船中,以提高海上意识。与我们联系,以了解有关Charles River和Awarion Automos Lookout系统如何可以提高您的海上业务需求的更多信息。
• 使用多种方法(照片识别、遗传学、卫星标记、无人机使用)进行长期多物种研究 • 与 NMFS、海军、大学和其他非营利组织的研究人员合作 • 11 种齿鲸和 2 种须鲸的照片识别目录,来自 12 个物种的约 320 个个体的卫星标记数据 • 问题包括种群结构和大小、空间使用、对海军声纳的反应 • 主要资金来自美国国家海洋和大气管理局渔业局、美国海军(海军研究办公室、海洋生物资源、太平洋舰队),并得到了一些基金会和其他组织的支持
定向频率分析和记录 (DIFAR) 声纳浮标已被海军使用数十年,可通过单个传感器为低频(小于 4 kHz)声源提供磁方位。计算技术的进步使这种声学传感器技术越来越易于使用且功能更强大。此处提供的信息旨在帮助新用户确定 DIFAR 传感器是否适合鲸鱼声学研究。须鲸的声学探测范围平均接近 20 公里,但根据条件不同,范围从 5 到 100 公里不等。DIFAR 声纳浮标到典型研究船的无线电接收范围平均为 18 公里,船上有全向天线,声纳浮标上有标准天线。对一组鲸鱼叫声分析了 DIFAR 方位精度,其中鲸鱼的轨迹是众所周知的。经发现,DIFAR 传感器的方位标准偏差为 2.1 度。可以使用 DIFAR 方位消除已知位置研究船声音的系统误差和磁偏差。DIFAR 传感器阵列需要的传感器比传统水听器阵列少,有时可以提供比传统水听器使用的“到达时间”双曲线方法更准确的源位置。与传统水听器相比,使用 DIFAR 传感器更容易定位船舶等连续声音,因为通常很难找到瞬态特征来估计使用传统水听器阵列进行双曲线定位所需的时间差。DIFAR 水听器系统非常适合露脊鲸、蓝鲸、小须鲸、长须鲸和其他须鲸的叫声,以及包括船舶在内的许多其他声源。
• 使用多种方法(照片识别、遗传学、卫星标记、无人机使用)进行长期多物种研究 • 与 NMFS、海军、大学和其他非营利组织的研究人员合作 • 11 种齿鲸和 2 种须鲸的照片识别目录,来自 12 个物种的约 320 个个体的卫星标记数据 • 问题包括种群结构和大小、空间使用、对海军声纳的反应 • 主要资金来自美国国家海洋和大气管理局渔业局、美国海军(海军研究办公室、海洋生物资源、太平洋舰队),并得到了一些基金会和其他组织的支持
如果提出上述问题,结果是动物实验停止,生物医学和行为研究是否会停止?可能不会,但这个问题太大了,无法在此讨论。但是,假设它确实停止了。人类物种无疑将继续存在,就像在动物实验开始之前一样,但寿命和生活质量肯定会下降。然而,其他制度,从中人类个人和集体受益——例如奴隶制——却因道德原因而被抛弃。出于类似的原因,许多其他制度也应该被抛弃,例如对妇女、儿童、老年人和边缘人群的压迫,以及对核武器“优越性”的追求。我在这里并不是主张停止动物实验,只是指出,停止动物实验会给我们带来很多不便,甚至痛苦,但事情还没有结束。
定向频率分析和记录 (DIFAR) 声纳浮标已被海军使用了数十年,它通过单个传感器为低频(小于 4 kHz)声源提供磁方位。计算技术的进步使这种声学传感器技术越来越易于使用且功能更强大。此处提供的信息旨在帮助新用户确定 DIFAR 传感器是否适合鲸鱼声学研究。须鲸的声学探测范围平均接近 20 公里,但根据条件不同,范围从 5 到 100 公里不等。DIFAR 声纳浮标到典型研究船的无线电接收范围平均为 18 公里,船上有全向天线,声纳浮标上有标准天线。对一组鲸鱼叫声分析了 DIFAR 方位精度,其中鲸鱼的轨迹是众所周知的。经发现,DIFAR 传感器的方位标准偏差为 2.1 度。可以使用 DIFAR 方位消除已知位置研究船声音的系统误差和磁偏差。DIFAR 传感器阵列需要的传感器比传统水听器阵列少,有时可以提供比传统水听器使用的“到达时间”双曲线方法更准确的源位置。与传统水听器相比,使用 DIFAR 传感器更容易定位船舶等连续声音,因为通常很难找到瞬态特征来估计使用传统水听器阵列进行双曲线定位所需的时间差。DIFAR 水听器系统非常适合露脊鲸、蓝鲸、小须鲸、长须鲸和其他须鲸的叫声,以及包括船舶在内的许多其他声源。
摘要:当前的安全事务中的人机动态将人工智能在循环中的人工智能地位,以进行决策和行动。随着AI认知,速度和武器方面的技术进步,人类操作员越来越多地转移到循环中,AI在战争和国防决策中承担更多责任,战术甚至战略性。人类操作员也从循环中掉下来,将增强的AI系统作为生物学和物理限制,因为在狭窄的应用中人工智能并不相同。那些可能会在未来几十年中向一般AI扩展,并引起了重大的战略,组织甚至存在的关注。此外,自然人类如何反应并与日益高级的,甚至超级智能的AI以及奇异事件互动,将具有破坏性的,变革性的影响对安全事务,甚至在哲学层面上辨别什么是战争是什么。关键词:人工智能,人工智能,战争,奇异性,超人类主义,罪恶,人类机器人团队W