图 4 基于隐马尔可夫模型估计的白天克罗泽特和南乔治亚岛觅食的雌性和雄性漂泊信天翁 Diomedea exulans 与风速(a–b、e–f、i–j、m–n;海拔 10 米)和风向相对于鸟类轨迹(c–d、g–h、k–l、o–p)的转换概率。显示的主要行为转换如下:定向飞行到区域限制搜寻(a–d),搜寻到定向飞行(e–h),搜寻到休息(i–l)和休息到搜寻(m–p)。由于从定向飞行到休息和从休息到搜寻的转换概率为零,我们认为从休息到搜寻的转换代表起飞行为,从搜寻到休息的转换代表降落在海面上。模型估计的系数以雌性(实线)和雄性(虚线)的黑线表示,95% 置信区间以灰色阴影表示。请注意,y 轴范围不同
“我们一直在与政府和国会合作,今天我们很高兴获得(疫苗)在家禽中获得许可,我们认为这将是一种我们认为必要的政府的工具,” Zoetis的首席执行官克里斯汀·佩克(Kristin Peck)告诉CNBC。
2000 财政年度,美国国防部 (DoD) 遗产计划办公室为南卡罗来纳州克莱姆森大学雷达鸟类学实验室 (CUROL) 提供了资金,以开发一种能够探测机场鸟类的鸟类雷达系统,从而减少鸟击的发生。最初的 BirdRad 系统旨在成为一种廉价的移动式鸟类雷达。它包括一个低成本的商用海事雷达,配备 4 度波束宽度抛物面天线(以获得更好的高度分辨率)和一台台式个人计算机,用于在图形文件中显示和捕获雷达图像。CUROL 建造了五个 BirdRad 系统,部署在三个海军、一个海军陆战队和一个空军基地。虽然 BirdRad 在探测零到六海里范围内的鸟类方面非常有效,但它有几个局限性。主要是来自静止物体(“地面杂波”)的雷达回波会遮挡移动目标;从屏幕截图中提取目标轨迹太慢并且需要大量劳动力,无法追踪许多种类的鸟类;并且很难将屏幕上的目标与周围的景观联系起来。
摘要 — 物联网(IoT)正受到广泛关注。目前,大多数现有的物联网系统严重依赖于每个对象/事物的标识(ID)号,称为基于ID的物联网。然而,在许多情况下,由于非合作事物未附加任何ID号或难以获取现有ID号,基于ID的物联网变得不适用。本文针对非合作事物提出了一种新的非ID(nID)事物概念,并提出了基于nID的物联网,以使物联网更适合实际情况。然后,为机场航空风险管理设计了一种基于nID的物联网解决方案,并讨论了包括感知,编码和解决在内的一些关键问题。此外,本文还提供了一个鸟击危险管理的典型案例研究,以进一步解释如何将基于 nID 的物联网应用于非合作事物场景。预计基于 nID 的物联网将支持越来越多没有可用 ID 的事物的应用。
戴胜八哥(Fregilupus varius)是鸮科的一种已灭绝物种,原产于印度洋的留尼汪岛。该物种在 19 世纪中叶迅速消失,主要原因是人类的过度开发。我们生成了一个覆盖度约为 11 9 的基因组来重建戴胜八哥的人口历史,并将这些结果与其他八哥和八哥物种的人口历史进行了比较。我们的分析证实了戴胜八哥与 Sturnia 属、Leucopsar 属和 Sturnornis 属的近亲关系,并揭示了它在进化史上经历了严重的种群瓶颈效应,但与其他灭绝或极度濒危的鸟类相比,其有效种群规模并不特别低。
抽象的人类经历是复杂而主观的。这种主观性以人们标记机器视觉模型标记图像的方式反映了。经常假定注释任务可以提供客观的结果,但该假设不允许人类经验的主观性。本文研究了主观人类判断在标记用于训练机器视觉模型的图像的行为任务中的含义。我们确定了歧义的三个主要来源:(1)图像中标签的描述可能简单地模棱两可,(2)评估者的背景和经验可以影响其判断力,以及(3)定义标签任务的方式也可能会影响评级者的判断。通过采取步骤解决这些歧义来源,我们可以创建更健壮和可靠的机器视觉模型。
1. 注意。10/28 号跑道的混凝土末端和距离 10 号跑道入口 2000 英尺以内的跑道区域在潮湿时容易打滑,特别是如果发现雨后有积水。 2. 注意。鸟击风险高,特别是在春秋两季的迁徙季节。 3. 电缆 插图:a. 10 号跑道 - 373 米/1223 英尺。b. 28 号跑道 - 374 米/1227 英尺。正常操作 - 两条电缆均已拆除。快速喷气机操作 - App 电缆已拆除,超限电缆已升起。 4. 电路 a. 方向。10 号跑道 RHC:28 号跑道 LHC。b. 高度。(i)正常 - 1100 QNH。(ii)重度 - 1600 QNH。 (iii) FJ 低空转弯 - 600 QNH。5. TKOF 后保持 Rwy Tr 直到飞过海面。6. 附加频率:Talkdown 240·05、GATA1 240·1、GATA2 355·0、APS Ops 369·45、SAR 252·8。
摘要:外来物体损伤 (FOD) 是航空业常见的风险,会对飞机造成潜在损害,外部 FOD 危险包括鸟击、沙尘暴、跑道上的火山灰云。内部 FOD 危险通过电气连接不当、控制电缆不当等方式对飞行安全造成干扰,长期以来,它已经导致了许多可怕的事故。每年 FOD 障碍的成本非常高,约为 12 亿令吉。因此,必须在不影响性能的情况下消除 FOD,并且指定组织(包括航空公司)必须采取适当的技术和策略来进一步消除 FOD 事件。由于某些情况和复杂因素,例如不当的工作行为、恶劣的工作环境、损伤容限和技术不足以及混乱的内部管理系统,控制 FOD 并不容易。本研究的主要目的是进一步讨论和解释 FOD 及其预防 FOD 的技术。 FOD 是航空业普遍关注的问题,也是导致飞机故障和意外损坏(如人员伤亡)的原因之一。通过本研究,我们收集并讨论了许多与 FOD 问题及其灾难性故障相关的信息,以及它们对航空业的影响。
摘要:脑内活性氧 (ROS) 的产生受稳态控制,有助于正常的神经功能。脑老化或病理条件下控制机制的低效会导致 ROS 过量产生,从而导致氧化性神经细胞损伤和退化。在对氧化应激引起的神经功能障碍具有治疗潜力的化合物中,鸟嘌呤类嘌呤 (GBP) 最为典型,其中最典型的是核苷鸟苷 (GUO) 和核碱基鸟嘌呤 (GUA),它们的作用不同。事实上,将 GUO 施用给急性脑损伤(缺血/缺氧或创伤)或慢性神经/神经退行性疾病的体外或体内模型,可发挥神经保护和抗炎作用,减少活性自由基的产生,并通过多种分子信号改善线粒体功能。然而,将 GUO 施用给啮齿动物也会导致失忆效应。相反,代谢物 GUA 可通过暂时增加 ROS 生成和刺激一氧化氮/可溶性鸟苷酸环化酶/cGMP/蛋白激酶 G 级联来有效治疗记忆相关疾病,而这长期以来被认为对认知功能有益。因此,值得进一步研究以确定 GUO 和 GUA 的治疗作用,并评估这些化合物可以更有效地用于哪些病理性脑部疾病。