背景:动物和细胞中活性氧 (ROS) 的产生通常是由于暴露于低强度因素(包括磁场)所致。关于氧化应激的引发以及 ROS 和自由基在磁场影响中的作用的讨论大多集中在自由基诱导的 DNA 损伤上。方法:用分光光度法测定最终溶液中的 DNA 浓度。通过聚合酶链式反应对 8-氧鸟嘌呤 DNA 糖基化酶 (hOGG1) 基因的多态性变体 rs1052133 进行分型。采用酶联免疫吸附测定法测定 DNA 中的 8-氧鸟嘌呤水平。为了处理暴露于交变磁场的样品,作者开发了一种在交变磁场中自动研究生物流体的装置。用分光光度法测定 DNA 水溶液中过氧化氢的含量。结果:实验确定,在低频磁场作用下,水介质中过氧化氢的浓度增加3至5倍,会降低基因组材料对氧化修饰的抵抗力以及DNA中8-氧鸟嘌呤的积累。提出了低频磁场对核酸和蛋白质水溶液作用机理的模型,该模型满足水介质中活性氧物质转化的化学振荡器模型。该模型说明了DNA水溶液中发生的过程的振荡性质,并可以预测生物聚合物水溶液中过氧化氢浓度的变化,这取决于作用的低强度磁场的频率。结论:低强度磁场对生物系统影响的机制中关键因素是化学振荡器水环境中ROS的生成,其中物理和化学过程(电子转移,自由基的衰变和加成反应,自旋磁诱导的转化,最长寿命形式过氧化氢的合成和衰变)的竞争受磁场控制。
摘要:脑内活性氧 (ROS) 的产生受稳态控制,有助于正常的神经功能。脑老化或病理条件下控制机制的低效会导致 ROS 过量产生,从而导致氧化性神经细胞损伤和退化。在对氧化应激引起的神经功能障碍具有治疗潜力的化合物中,鸟嘌呤类嘌呤 (GBP) 最为典型,其中最典型的是核苷鸟苷 (GUO) 和核碱基鸟嘌呤 (GUA),它们的作用不同。事实上,将 GUO 施用给急性脑损伤(缺血/缺氧或创伤)或慢性神经/神经退行性疾病的体外或体内模型,可发挥神经保护和抗炎作用,减少活性自由基的产生,并通过多种分子信号改善线粒体功能。然而,将 GUO 施用给啮齿动物也会导致失忆效应。相反,代谢物 GUA 可通过暂时增加 ROS 生成和刺激一氧化氮/可溶性鸟苷酸环化酶/cGMP/蛋白激酶 G 级联来有效治疗记忆相关疾病,而这长期以来被认为对认知功能有益。因此,值得进一步研究以确定 GUO 和 GUA 的治疗作用,并评估这些化合物可以更有效地用于哪些病理性脑部疾病。
属 要测量 直接属 高sensi 分析 对于仅有两个已知的鸟嘌呤脱氨酶,鸟嘌呤和8-亚瓜氨酸的已知底物探索了测定的特征。 我们还对来自牛脑和肝脏的Na要测量 直接属 高sensi 分析 对于仅有两个已知的鸟嘌呤脱氨酶,鸟嘌呤和8-亚瓜氨酸的已知底物探索了测定的特征。 我们还对来自牛脑和肝脏的Na直接属 高sensi 分析 对于仅有两个已知的鸟嘌呤脱氨酶,鸟嘌呤和8-亚瓜氨酸的已知底物探索了测定的特征。 我们还对来自牛脑和肝脏的Na高sensi 分析 对于仅有两个已知的鸟嘌呤脱氨酶,鸟嘌呤和8-亚瓜氨酸的已知底物探索了测定的特征。 我们还对来自牛脑和肝脏的Na分析 对于仅有两个已知的鸟嘌呤脱氨酶,鸟嘌呤和8-亚瓜氨酸的已知底物探索了测定的特征。 我们还对来自牛脑和肝脏的Na对于仅有两个已知的鸟嘌呤脱氨酶,鸟嘌呤和8-亚瓜氨酸的已知底物探索了测定的特征。我们还对来自牛脑和肝脏的Na