摘要。构建了一种基于自然交互行为手势的微型旋翼飞行器控制方法。为了实现通过手势控制微型旋翼飞行器的飞行姿态,通过Leap Motion控制器获取手掌平放姿态数据,通过坐标系变换和姿态角变换将数据转换为不同坐标系之间的旋翼飞行器姿态控制命令,并通过无线传输模块与微型旋翼飞行器进行通信,搭建了微型旋翼飞行器控制系统,实现了对旋翼飞行器的上升、悬停、降落、俯仰等飞行动作的控制。在实际实验中,通过不同的手势实现了对微型旋翼飞行器的飞行姿态控制。通过手势控制微型旋翼飞行器更符合自然交互的特点,是人机交互的一种延伸。
1.1 复合直升机示例。........................3 1.2 倾转旋翼飞机示例。。。。。。。。。。。。。。。。。。。。。。。。。3 1.3 前飞对后退叶片速度的影响。.........4 1.4 同轴反向旋转旋翼能够在前飞期间保持每个旋翼的升力不对称,每个旋翼的力矩相互抵消。通过消除后退叶片升力来平衡旋翼力矩的需要,可以缓解后退叶片失速,就像在单旋翼飞行器中一样(左图)[5]。..。。。。。。。。。。。。。。。。。。。。。。。。..4 1.5 兰利全尺寸风洞中的 PCA-2 转子测试装置 [11]。.9 1.6 带有悬臂转子配置的 Meyer 和 Falabella 风洞测试装置 [12]。.............................10 1.7 叶片表面压力端口的展向和弦向位置 [12]。11 1.8 零铰链偏移转子的轮毂组件,显示来自叶片的压力管连接到轮毂内的压力拾取器 [12]。.12 1.9 1965 年詹金斯在兰利全尺寸风洞中的测试装置 [13]。.14 1.10 高前进比时转子推力和 H 力系数与总距 (A0) 的关系,显示总距推力反转 [13]。..........15 1.11 反向速度转子风洞模型中使用的“可逆”翼型截面轮廓 [16]。.........................18 1.12 为反向速度转子风洞模型开发的每转两个斜盘 [16]。.。。。。。。。。。。。。。。。。。。。。。。。。...19 1.13 在恒定盘面载荷下测量的有效转子升阻比,以提高前进比 [16]。.......................21 1.14 升力对总距比与前进比的敏感度变化 [16]。....22 1.15 位于 NASA 艾姆斯研究中心 40 x 80 英尺 NFAC 风洞中的仪表化 UH-60A 空气负载旋翼 [17]。...。。。。。。。。。。。。。。。。。。。。。。24 1.16 压力传感器在仪表旋翼叶片上的分布 [17] 24 1.17 UH-60A 减速旋翼风洞试验中明显的集体推力反向趋势 [18]。...................................26 1.18 不同推进比下的升阻比与升力零和正 4 度轴,40% NR [18]。。。。。。。。。。。。。。。。。。。。。。。27
近来,无人机 (UAV) 作为一个快速发展的领域,吸引了越来越多的科学家和消费者的关注。人们对多旋翼无人机尤其感兴趣,它们因其低速飞行、悬停和垂直起降能力而被认为是用于高质量航空摄影、摄像、监控和其他地形探索的良好飞行平台。所述特性使它们易于在空间有限的条件下使用。显然,这种飞行器的行为是不稳定的,因此需要负责稳定和导航功能的飞行控制系统 (FCS)。此外,FCS 能够提供完全自主飞行的能力。当代电子技术的快速发展使得制造低成本和紧凑型 FCS 成为可能。然而,实施的测量单元的精度不高。多传感器数据融合是提高精度的方法之一。本文介绍了 FCS 开发中需要指导的要求和一般概念,以及飞行测试中获得的结果及其比较。特别关注多传感器数据融合方法,该方法可以提高飞行精度和可靠性。此外,还提供了硬件和软件架构的描述。
1。牙科学院,Thi-Qar大学,Thi-qar,64001,伊拉克2。 Thi-Qar大学理学院化学系,Thi-Qar,64001,伊拉克3。 工程学院,Thi-Qar大学,Thi-Qar,64001,伊拉克 *通讯作者的电子邮件:assa.sayar@sci.utq.utq.utq.utq.utq.utq.iq Abstract Biododiesel,来自可再生资源的摘要生物柴油是支持能源安全的可能替代方案之一。 这项研究旨在通过直接式静止化从卵藻和鸭藻植物中生产生物柴油。 为所考虑的鸭植物取了5 g的干生物量,并将藻类浸入50 mL甲醇中:盐酸:氯仿:氯仿(10:1:1 v/v/v/v)溶剂溶剂以提取脂肪酸甲基酯(FAME)。 使用FT-IR和GC-MAS光谱法进行提取的材料进行表征。 准备了准备的样品,以鉴定化合物,特别是脂质。 结果表明,在形成的酯(生物柴油)中存在饱和和不饱和脂肪酸。 在衍生自鸭植物的生物柴油中鉴定出的饱和脂肪酸和不饱和脂肪酸分别为24.19%和20.34%,藻类分别为19.92%和17.2%。 这些结果表明,从这些类型的生物量中产生生物柴油的潜力很高,这可以为能源供应提供另一种途径。 关键字:生物柴油,odogonium,Duckweed,Direct Transesterification,脂肪酸甲基酯。 文章类型:研究文章。 2020a)。 可再生资源可以提供可行的途径来解决常规能源缺陷(Sayer等人牙科学院,Thi-Qar大学,Thi-qar,64001,伊拉克2。Thi-Qar大学理学院化学系,Thi-Qar,64001,伊拉克3。 工程学院,Thi-Qar大学,Thi-Qar,64001,伊拉克 *通讯作者的电子邮件:assa.sayar@sci.utq.utq.utq.utq.utq.utq.iq Abstract Biododiesel,来自可再生资源的摘要生物柴油是支持能源安全的可能替代方案之一。 这项研究旨在通过直接式静止化从卵藻和鸭藻植物中生产生物柴油。 为所考虑的鸭植物取了5 g的干生物量,并将藻类浸入50 mL甲醇中:盐酸:氯仿:氯仿(10:1:1 v/v/v/v)溶剂溶剂以提取脂肪酸甲基酯(FAME)。 使用FT-IR和GC-MAS光谱法进行提取的材料进行表征。 准备了准备的样品,以鉴定化合物,特别是脂质。 结果表明,在形成的酯(生物柴油)中存在饱和和不饱和脂肪酸。 在衍生自鸭植物的生物柴油中鉴定出的饱和脂肪酸和不饱和脂肪酸分别为24.19%和20.34%,藻类分别为19.92%和17.2%。 这些结果表明,从这些类型的生物量中产生生物柴油的潜力很高,这可以为能源供应提供另一种途径。 关键字:生物柴油,odogonium,Duckweed,Direct Transesterification,脂肪酸甲基酯。 文章类型:研究文章。 2020a)。 可再生资源可以提供可行的途径来解决常规能源缺陷(Sayer等人Thi-Qar大学理学院化学系,Thi-Qar,64001,伊拉克3。工程学院,Thi-Qar大学,Thi-Qar,64001,伊拉克 *通讯作者的电子邮件:assa.sayar@sci.utq.utq.utq.utq.utq.utq.iq Abstract Biododiesel,来自可再生资源的摘要生物柴油是支持能源安全的可能替代方案之一。 这项研究旨在通过直接式静止化从卵藻和鸭藻植物中生产生物柴油。 为所考虑的鸭植物取了5 g的干生物量,并将藻类浸入50 mL甲醇中:盐酸:氯仿:氯仿(10:1:1 v/v/v/v)溶剂溶剂以提取脂肪酸甲基酯(FAME)。 使用FT-IR和GC-MAS光谱法进行提取的材料进行表征。 准备了准备的样品,以鉴定化合物,特别是脂质。 结果表明,在形成的酯(生物柴油)中存在饱和和不饱和脂肪酸。 在衍生自鸭植物的生物柴油中鉴定出的饱和脂肪酸和不饱和脂肪酸分别为24.19%和20.34%,藻类分别为19.92%和17.2%。 这些结果表明,从这些类型的生物量中产生生物柴油的潜力很高,这可以为能源供应提供另一种途径。 关键字:生物柴油,odogonium,Duckweed,Direct Transesterification,脂肪酸甲基酯。 文章类型:研究文章。 2020a)。 可再生资源可以提供可行的途径来解决常规能源缺陷(Sayer等人工程学院,Thi-Qar大学,Thi-Qar,64001,伊拉克 *通讯作者的电子邮件:assa.sayar@sci.utq.utq.utq.utq.utq.utq.iq Abstract Biododiesel,来自可再生资源的摘要生物柴油是支持能源安全的可能替代方案之一。这项研究旨在通过直接式静止化从卵藻和鸭藻植物中生产生物柴油。为所考虑的鸭植物取了5 g的干生物量,并将藻类浸入50 mL甲醇中:盐酸:氯仿:氯仿(10:1:1 v/v/v/v)溶剂溶剂以提取脂肪酸甲基酯(FAME)。使用FT-IR和GC-MAS光谱法进行提取的材料进行表征。准备了准备的样品,以鉴定化合物,特别是脂质。结果表明,在形成的酯(生物柴油)中存在饱和和不饱和脂肪酸。在衍生自鸭植物的生物柴油中鉴定出的饱和脂肪酸和不饱和脂肪酸分别为24.19%和20.34%,藻类分别为19.92%和17.2%。这些结果表明,从这些类型的生物量中产生生物柴油的潜力很高,这可以为能源供应提供另一种途径。关键字:生物柴油,odogonium,Duckweed,Direct Transesterification,脂肪酸甲基酯。文章类型:研究文章。2020a)。可再生资源可以提供可行的途径来解决常规能源缺陷(Sayer等人引言能源需求的持续增加以及政治冲突,污染损害和全球变暖的增加造成了压力,以寻找替代煤炭,石油和石油衍生品代表的传统能源资源的替代方案。此外,耗尽了常规燃料(化石燃料)和强迫研究以调查替代能源以节省全球经济和环境(Ethaib等人2020)。生物燃料已成为有希望的替代能源。是第一代生物燃料,生物乙醇和生物柴油的是由食品原料产生的,例如淀粉,糖和从玉米,小麦和大豆等农作物植物中得出的油(Neto等人。 2019)。 使用食物作物原料来产生生物燃料,触发辩论以在燃料和食物之间进行选择(Alaswad等人。 2015)。 此外,要创造足够的生物质,粮食作物原料需要巨大的农业区域,这可能导致土地破坏,生物多样性损失,栖息地损失,水耗尽和空气污染(Neto等人(Neto等人) 2019)。 因此,该研究指示使用草,木材,木质纤维素生物量和其他有机废物生产非食品作物的生物燃料,这被称为第二代生物燃料。 木质纤维素材料的复杂结构需要一个预处理过程,以便在水解过程中有效转化(Ethaib等人 2020b)。 已经应用了各种各样的预处理过程。 但是,大多数这些过程都遇到了技术困难,最终反映了最终产品的成本(Ethaib等人是由食品原料产生的,例如淀粉,糖和从玉米,小麦和大豆等农作物植物中得出的油(Neto等人。2019)。使用食物作物原料来产生生物燃料,触发辩论以在燃料和食物之间进行选择(Alaswad等人。2015)。此外,要创造足够的生物质,粮食作物原料需要巨大的农业区域,这可能导致土地破坏,生物多样性损失,栖息地损失,水耗尽和空气污染(Neto等人(Neto等人)2019)。因此,该研究指示使用草,木材,木质纤维素生物量和其他有机废物生产非食品作物的生物燃料,这被称为第二代生物燃料。木质纤维素材料的复杂结构需要一个预处理过程,以便在水解过程中有效转化(Ethaib等人2020b)。已经应用了各种各样的预处理过程。但是,大多数这些过程都遇到了技术困难,最终反映了最终产品的成本(Ethaib等人2020c)。在寻找可行且具有成本效益的替代方案时,藻类和藻类衍生的生物质得到了相当大的关注或生产改进的生物燃料(Gajraj等人)2018)。使用藻类
2.1 覆盖路径规划. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.3 近似分解. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................21 2.3.2 结构检查....................................................................................................................................................................................25 2.3.3 结论....................................................................................................................................................................................................25 2.3.3 结论....................................................................................................................................................................................................25 27
Calise 和 Preston [1] 开发了一种近似校正制导命令以消除风的影响的方法。分析表明,风对制导回路稳定性的影响相当于在大多数飞行条件下增加制导回路增益,甚至在风速超过飞行器空速时会导致回路增益符号反转。Luders 等人 [2] 提出了一种在线稳健轨迹规划,以在风不确定的情况下执行防撞和精确着陆。显式实时风建模和分类用于预测未来的干扰,采样技术确保有效保持对可能变化的稳健性。其他大多数工作 [3-6] 寻求稳健的翼伞终端制导,以便在各种风干扰下准确和迎风着陆。
摘要:设计并测试了一种用于现场测量动态充气机翼上下表面内外压差的仪器系统,揭示了充气翼型的空气动力学特性的重要见解。风洞试验证明了低压差读数在 1.0–120 Pa 范围内的全部能力,覆盖 3 至 10 m/s 的速度,攻角从 − 20 到 +25 ◦。读数稳定,在运行飞行范围内的变化系数为 2% 至 7%。实验数据证实了底部前缘再循环气泡的出现,与低雷诺数状态和进气口的存在有关。它支持基于局部压力差的空气动力学特性新方法的提议,该方法考虑了受限的气流结构并提供与实际观察相符的升力估计。结果也与之前按照不同策略获得的数据兼容,并被证明可以有效地参数化膨胀和失速现象。总体而言,该仪器可以直接用作飞行测试设备,并且可以进一步转换为崩溃警报和预防系统。
无人驾驶飞行器 (UAV) 是一种飞行机器人,在民用和军用领域均有使用,且使用量呈急剧增长趋势。它们已广泛应用于民用领域,如执法、地球表面测绘和灾害监测,以及军事任务,如监视、侦察和目标捕获。随着对无人驾驶飞行器使用量的需求不断增长,在自主性、飞行能力和有效载荷方面具有更大进步的新型设计正在涌现,可携带更复杂、更智能的传感器。随着这些技术进步,人们将为无人驾驶飞行器找到新的作战领域。本论文主要研究新型无人驾驶飞行器 (SUAVI:萨班哲大学无人驾驶飞行器) 的设计、构造和飞行控制。SUAVI 是一种电动紧凑型四倾翼无人驾驶飞行器,能够像直升机一样垂直起降 (VTOL),并通过倾斜机翼像飞机一样水平飞行。它携带机载摄像机,用于捕捉图像并通过与地面站的射频通信进行广播。在 SUAVI 的气动和机械设计中,考虑了飞行时间、飞行速度、尺寸、电源和要执行的任务。气动设计是通过考虑气动效率的最大化和安全飞行特性来进行的。推进系统中的组件的选择是为了优化推进效率并满足要求
为了加深对此类飞行器地面效应现象的了解,我们通过飞行和地面试验获得了 Tu-144 超音速运输机的地面效应特性。飞行试验计划包括在下降飞行机动过程中获得的动态测量值和在跑道上平飞机动过程中获得的稳态测量值。我们利用 NASA 兰利研究中心 14 英尺 x 22 英尺亚音速风洞中的开发模型支持系统,为 Tu-144 的简单平面模型获取了动态和稳态风洞试验数据。我们还提供了 Tu-144 稳态全配置风洞试验数据。我们将实验方法的结果与简单计算方法(面板理论)的结果进行了比较。结果表明,幂律关系可以有效拟合所有数据集的升力随离地高度的变化。我们已使用组合数据集来评估测试技术并评估地面效应对各种参数的敏感性。机身、起落架、鸭翼和发动机气流等配置细节对各种数据集之间的相关性影响不大。没有发现任何明显的趋势与飞行路径角度或下降率有关。
nasa.gov › 中心 › dryden › pdf PDF 作者:JW Pahle · 1990 — 作者:JW Pahle · 1990 数字电传操纵 (DFBW) 飞机,采用复合机翼和机翼枢轴机构取代现有的……信号可靠性和。30 页