我们介绍了206个红色巨型分支星星的化学成分,它们是小型麦哲伦云(SMC)的成员,该恒星使用具有多对象光谱仪的giraffe收集的光学高分辨率光谱在ESO非常大的望远镜上。该样本包括位于母星系中不同位置的三个场中的恒星。我们分析了元素的主要组,即光(Na),α-(O,Mg,Si,Ca和Ti),Iron -Peak(SC,V,Fe,Fe,Ni和Cu)和S -Process Elements(ZR,BA和LA)。样品的金属性分布在[Fe / H]〜–1 dex和弱金属贫困尾部周围显示出一个主要峰。但是,三个领域显示不同的[Fe / H]分布。尤其是在两个最内在字段的平均金属性之间发现0.2 dex的差异。金属贫困恒星的分数从最内向的领域显着增加(从〜1到约20%),到最外面的场,可能反映了SMC中的年龄梯度。我们还发现了可能在化学和运动学不同的下结构的指示。SMC恒星的比率显然与银河系恒星的比率明显不同,特别是由大型恒星产生的元素(例如na,α和大多数铁峰元素),其丰度比率低于我们星系中测量的元素。这表明,根据该星系期望的低恒星形成速率,大量恒星对SMC的化学富集的贡献少于银河系。最后,我们在两个内部领域的某些元素(Na,Ti,V和Zr)的丰度(Na,Ti,V和Zr)中确定了小的系统差异,这表明SMC中的化学富集历史并不均匀。
小的麦哲伦云(SMC)是跨越较大年龄范围的富含球形簇(GC)系统的主机。SMC簇的化学组成仍然很少了解化学进化研究。在这里,我们提供了三个不同的群集中进化巨人的第一个详细的化学研究,NGC 121(10.5 Gyr),NGC 339(6 Gyr)和NGC 419(1.4 Gyr)。结果基于在非常大的望远镜处用火焰获得的高分辨率光谱。这些簇的化学物质与SMC场恒星的化学含量非常相似,支持SMC相对于银河系的特定化学富集史。在所有三个簇中观察到的近似太阳尺度的[α / fe],独立于其[fe / h],是SMC的低恒星形成效率。与银河系相比,主要由大型恒星产生的元素严重代表性不足。尤其是年轻的NGC 419群集的极低[Zn / fe]表明,在过去的2个GYR中,Hypernovae的贡献相对较少。无论年龄如何,这三个GC具有较高的[EU / FE]值。这表明SMC中的R-过程元素的产生非常有效,直至1.5 Gyr,其富集时间尺度与IA型超新星相当。将最古老的SMC对象NGC 121的属性与与Gaia-celladus合并事件相关的原位银河系簇和积聚的簇进行比较时,SMC已经达到了与Gaia-Ecceladus相同的金属性,但具有较低的[Fe / H]比率下[Fe / H]的比率。这表明早期SMC和Gaia-enceladus的化学富集历史存在,并且SMC的早期质量可能比Gaia-Ecceladus低。
小的麦哲伦云(SMC)是跨越较大年龄范围的富含球形簇(GC)系统的主机。SMC簇的化学组成仍然很少了解化学进化研究。在这里,我们提供了三个不同的群集中进化巨人的第一个详细的化学研究,NGC 121(10.5 Gyr),NGC 339(6 Gyr)和NGC 419(1.4 Gyr)。结果基于在非常大的望远镜处用火焰获得的高分辨率光谱。这些簇的化学物质与SMC场恒星的化学含量非常相似,支持SMC相对于银河系的特定化学富集史。在所有三个簇中观察到的近似太阳尺度的[α / fe],与它们的[Fe / H]无关,是SMC的低星形成效率。与银河系相比,主要由大型恒星产生的元素严重代表性不足。尤其是年轻的NGC 419群集的极低[Zn / fe]表明,在过去的2个GYR中,Hypernovae的贡献相对较少。无论年龄如何,这三个GC具有较高的[EU / FE]值。这表明SMC中的R-过程元素的产生非常有效,直至1.5 Gyr,其富集时间尺度与IA型超新星相当。将最古老的SMC对象NGC 121的属性与与Gaia-celladus合并事件相关的原位银河系簇和积聚的簇进行比较时,SMC已经达到了与Gaia-Ecceladus相同的金属性,但具有较低的[Fe / H]比率下[Fe / H]的比率。这表明早期SMC和Gaia-enceladus的化学富集历史存在,并且SMC的早期质量可能比Gaia-Ecceladus低。
在预测恒星的演化和死亡方面,恒星进化模型的最新进展。我们提出了使用更新的P ARSEC v2.0代码计算的新的恒星进化模型,以获得金属和初始质量的全面和均匀的网格。核反应网络,质量损失处方和元素混合的处理都在P ARSEC v2.0中进行了更新。我们计算了跨越Z = 10-11至Z = 0的13个初始金属性的模型。03,质量范围从2.0m⊙到2000 m,由1100多个库(包括纯模型在内的2100个轨道)组成。对于每条轨道,从预先序列到最先进的早期抗肌肉分支或苏植物前阶段(取决于恒星质量)的进化。在这里,我们描述了轨道的特性及其化学和结构进化。我们计算了最终的命运和残余物质,并为每种金属性建立了质谱,发现合并的黑洞(BH)配对质量质量间隙仅在100至130 m⊙之间。此外,残留质量提供了与观察到的BH质量一致的模型,例如GW190521,Cygnus X-1和Gaia BH3二进制系统的BH质量。我们计算并提供了从恒星风和爆炸性最终命运以及电离光子速率的化学喷射。我们展示了金属性如何影响这些恒星的进化,命运,喷射和电离光子计数。所有模型均可公开可用,可以在P ARSEC数据库中检索。我们的结果表明,与不同代码计算的其他轨道的总体一致性很强,由于混合和质量损失的不同处理,对于非常巨大的恒星(M Zams> 120m⊙)而出现了最显着的差异。与大型麦哲伦云的狼蛛星云中观察到的大量恒星样本的比较表明,我们的轨道很好地重现了主要序列上的大多数恒星。