测试期间会发生什么?一旦您的孩子入睡,我们会将粘性垫(电极)贴在他们的额头和耳后,并设置我们的设备开始测试。我们将通过柔软的耳塞或耳机将不同音量的声音播放到您孩子的耳朵里,并在我们的电脑屏幕上记录他们对声音的反应。测试完成后,我们会轻轻地取下粘性垫并收起我们的设备。
摘要背景:人工智能 (AI) 为麻醉学等多个领域带来了进步。需要描述有关 AI 在麻醉学方面的应用的当前文献状态,以分析 AI 是否已应用于临床麻醉实践。事实证明,AI 和机器学习 (ML) 有助于制定有效的医疗保健策略。尽管 AI 已被用于实现麻醉自动化,但在麻醉学和疼痛管理中还不那么常见。方法:从 2003 年到 2023 年,从 Cochrane 图书馆、Google Scholar、Medline (Ovid) 和 PubMed 等多个数据库汇编了有关 AI 在麻醉学相关领域的各种用途的各种研究。然后对获得的数据进行分类、压缩和并列。该研究包括 AI、ML、疼痛和麻醉学的多种排列组合。结果:术后疼痛一直是麻醉师的主要关注点之一,而这方面的管理不善可能导致不良事件。近年来,疼痛管理策略取得了显著进展。其中之一,即人工智能在麻醉学和疼痛管理中的应用,引起了越来越多的关注。然而,尽管人工智能非常受欢迎,但也面临着挑战。结论:总体而言,本综述文章中探讨的大多数研究都预见了人工智能在麻醉学和疼痛管理中的应用的光明前景。然而,一些研究报告的结果好坏参半。因此,需要进一步进行更大样本量的调查来验证这些发现。关键词:人工智能、疼痛管理、麻醉学
雷帕霉素(MTOR)的哺乳动物/机械靶标是磷脂酰肌醇3-激酶(PI3K)途径的下游激酶。已经表明,涉及该信号通路的基因中的突变与狗和人类的几种癌症有关,尽管MTOR本身尚未被证明是突变的。mTOR由两种称为mTORC1和mTORC2的不同复合物组成,两者均在癌症中均失调。雷帕霉素最初抑制mTORC1,然后随着时间的推移抑制这两个复合物。激活MTORC1时,它主要通过磷酸化下游核糖体蛋白70s6kinase(70S6K)和真核翻译因子4E结合蛋白1(4EBP1)来促进细胞生长和增殖。PI3K途径已显示在犬骨肉瘤中已改变。 在一项研究59犬骨肉瘤(OSA)中,有37%的肿瘤具有涉及PI3K途径的基因改变。 过去的研究还表明,雷帕霉素对MTOR的抑制作用导致菌落生长的剂量降低,并在犬OSA细胞上存活。 尽管雷帕霉素已被证明可用于抑制癌细胞,但临床试验未能显示出疗效,并且其在狗中的使用受到其毒性潜力的限制。 最近,小分子已被证明特异性抑制MTORC1,而不是MTORC2,其中一种是麦芽钛矿。 也已经表明,麦芽己是比雷帕霉素更好地杀死人胶质母细胞瘤细胞,并且与单独的替莫唑胺相比,与护理标准的替莫唑胺相结合。PI3K途径已显示在犬骨肉瘤中已改变。在一项研究59犬骨肉瘤(OSA)中,有37%的肿瘤具有涉及PI3K途径的基因改变。过去的研究还表明,雷帕霉素对MTOR的抑制作用导致菌落生长的剂量降低,并在犬OSA细胞上存活。尽管雷帕霉素已被证明可用于抑制癌细胞,但临床试验未能显示出疗效,并且其在狗中的使用受到其毒性潜力的限制。最近,小分子已被证明特异性抑制MTORC1,而不是MTORC2,其中一种是麦芽钛矿。也已经表明,麦芽己是比雷帕霉素更好地杀死人胶质母细胞瘤细胞,并且与单独的替莫唑胺相比,与护理标准的替莫唑胺相结合。
个体差异。这会导致基于人群的估计值与个体血浆(或效应位)浓度之间存在差异 [18]。模型的准确性通常用 Varvel 标准 [19] 来表示,该标准将药物浓度的预测值与观察值进行比较。一般认为,血浆浓度的中位绝对预测误差(也称为 MDAPE 或预测精度)不应超过 30% [20]。基于人群的模型的进一步个体化,例如贝叶斯优化,已证明可以减少基于人群的误差,但效果有限 [18,21]。虽然残差定义了药代动力学模型预测药物浓度的准确性,但它对临床实践中的 TCI 的影响可能有限。临床医生进行滴定以达到效果,并将目标浓度定义为充分或不充分,而不是准确或不准确。因此,他们可能没有意识到药代动力学预测中的偏差,因为这对他们的临床任务影响不大。尽管性能上存在一些偏差,但这些 TCI 系统非常擅长建立稳态药物水平,这有助于临床医生实现所需的药物效果。考虑到易用性和预测准确性之间的权衡,具有实际优势的模型可能会抵消预测能力的轻微下降。患者之间的广泛差异可能导致临床病例与 PK-PD 模型不匹配,尤其是当患者特征超出模型中使用的协变量范围时(即超出用于构建模型的体重范围)。如果发生这种情况,临床医生可以选择推断或调整输入到 TCI 设备中的患者特征,以改善患者“与模型的拟合度”并适应可能可用的 TCI 系统的使用。虽然性能可能不是最理想的,但如果替代方案是使用手动给药推注和连续输注进行手动计算和调整,它仍然可能合适。外推可能导致正确剂量的不确定性,并可能导致剂量不足或过量,从而有麻醉不充分或恢复延迟的风险。
人工智能 (AI) 是一种使计算机能够解决问题并执行传统上需要人类智能的任务的技术。来自电子病历和功能强大的现代微型计算机的大量医疗数据的可用性促进了医学领域 AI 的发展。AI 已证明其适用于许多不同的医学领域,例如药物发现、诊断放射学和病理学,以及心脏病学和外科手术中的介入应用。然而,直到今天,AI 很少用于麻醉学的临床实践。尽管文献中已经发表了大量关于 AI 在麻醉学中的应用的研究,但已开发的用于商业用途或准备进行临床试验的机器人系统数量仍然有限。本文确定并讨论了 AI 系统的局限性,包括不正确的医疗数据格式、个体患者差异、当前 AI 系统能力不足、麻醉师缺乏使用 AI 的经验、系统不可靠、无法解释的 AI 结论和严格的规定。为了确保麻醉师对人工智能系统的信任并改善其在日常实践中的应用,应对系统和算法进行严格的质量控制。此外,麻醉学人员应该在人工智能系统的开发中发挥不可或缺的作用,然后我们才能看到更多的人工智能融入临床麻醉学。关键词
Covid-19感染发表:2021年3月9日更新:2022年2月22日; 2023年6月20日,确定从COVID-19和适当的术前评估水平的患者的最佳手术时机具有挑战性,鉴于有限的研究和麻醉学家和其他人要考虑的麻醉学家和其他意外情况。 由于大多数美国居民至少接受了一种疫苗剂量,并且大多数次数可能已被SARS-COV-2感染,因此研究和患者结局将持续歧义,尤其是当了解个人患者特征,外科手术程序和可能的病毒突变的复杂性时。 这些修订后的建议认识到广泛的公共疫苗接种,在摩西亚后阶段的毒性变异较少,以及最近的证据,使麻醉师和其他人批判性和客观地评估手术或手术是否可以在SARS-COV-2感染后七个星期之前发生。 1,2我们认识到我们和国际伙伴的贡献,以解决持续的患者获得围手术期护理和治疗。 这些建议类似于英国的最新出版物,并与并与之保持一致。 3这些修订后的建议不会降低SARS-COV-2感染的重要性或感染对个别患者的影响。 4,5,6,7,8,9,10临床决策者,包括患者,应在七个星期之前讨论进行程序的风险和好处。 麻醉师必须保持警惕,并专注于确保患者安全,降低围手术期并发症的风险并改善手术结局。 和2。Covid-19感染发表:2021年3月9日更新:2022年2月22日; 2023年6月20日,确定从COVID-19和适当的术前评估水平的患者的最佳手术时机具有挑战性,鉴于有限的研究和麻醉学家和其他人要考虑的麻醉学家和其他意外情况。由于大多数美国居民至少接受了一种疫苗剂量,并且大多数次数可能已被SARS-COV-2感染,因此研究和患者结局将持续歧义,尤其是当了解个人患者特征,外科手术程序和可能的病毒突变的复杂性时。这些修订后的建议认识到广泛的公共疫苗接种,在摩西亚后阶段的毒性变异较少,以及最近的证据,使麻醉师和其他人批判性和客观地评估手术或手术是否可以在SARS-COV-2感染后七个星期之前发生。1,2我们认识到我们和国际伙伴的贡献,以解决持续的患者获得围手术期护理和治疗。这些建议类似于英国的最新出版物,并与并与之保持一致。3这些修订后的建议不会降低SARS-COV-2感染的重要性或感染对个别患者的影响。4,5,6,7,8,9,10临床决策者,包括患者,应在七个星期之前讨论进行程序的风险和好处。 麻醉师必须保持警惕,并专注于确保患者安全,降低围手术期并发症的风险并改善手术结局。 和2。4,5,6,7,8,9,10临床决策者,包括患者,应在七个星期之前讨论进行程序的风险和好处。麻醉师必须保持警惕,并专注于确保患者安全,降低围手术期并发症的风险并改善手术结局。和2。应对从COVID-19的患者进行选修手术,仅在麻醉医生,外科医生或程序主义者并共同同意继续进行时。理想情况下,手术患者应在手术手术前至少两周进行疫苗接种。11手术/程序的决定取决于两个因素:1。患者是感染性的吗?对于不再具有感染性的患者,就患者的风险而言,从Covid-19和手术/手术/程序之间等待的适当时间是多少?我们提供以下建议,以协助该决策过程。
David David Zurakowski,F Lyle Micheli,G Barry Kussman,H和David Borsook A,B,B,I, * A波士顿儿童医院,哈佛医学院,疼痛中心,大脑和大脑,麻醉学,重症监护术,重症监护和止痛药,马萨诸塞州波士顿,马萨诸塞州Boston,Massach Shiptserts Bercasters bercy conserce,Harversets,Harvery,Harver,Harver,Harveria,Harvery,Harveria,Harveria,barthard sypercy consuptia,barthard syvercys,美国马萨诸塞州波士顿市的哈佛医学院,美国马萨诸塞州波士顿,蒙特利尔大学,蒙特利纳尔大学,蒙特利尔,蒙特利尔,蒙特利尔,加拿大魁北克,波士顿儿童医院波士顿儿童医院,哈佛医学院,麻醉学,重症监护和止痛医学系生物统计学系,波士顿,马萨诸塞州,马萨诸塞州,美国G波士顿儿童医院,哈佛医学院,波士顿,波士顿,马萨诸塞州波士顿,马萨诸塞州,美国马萨诸塞州医学医学医学院,哈佛医学院,卡迪科医学局,卡迪亚医学疗法,卡迪亚医学院,卡迪亚医学局,阿纳斯·阿纳斯·阿纳斯·阿纳斯·阿纳斯·阿纳斯,美国马萨诸塞州马萨诸塞州波士顿,马萨诸塞州综合医院,哈佛医学院,放射学系,马萨诸塞州波士顿,美国马萨诸塞州,美国马萨诸塞州
麻醉引起的神经毒性是与麻醉相关的一系列对中枢或周围神经系统的不利副作用。2000 年代初,从啮齿动物到非人类灵长类动物的几项动物模型研究表明,全身麻醉会导致神经细胞凋亡和神经发育障碍。很难将这一证据转化为临床实践。然而,一些研究表明,早期麻醉暴露会对人类产生持久的行为影响。右美托咪啶是一种镇静剂和镇痛剂,对 α-2 ( ɑ 2 ) 肾上腺素能受体以及咪唑啉 2 型 (I2) 受体具有激动剂活性,使其能够影响细胞内信号传导并调节细胞过程。除了易于输送、分布和从体内消除外,右美托咪啶还因其能够提供神经保护,防止细胞凋亡、缺血和炎症,同时保持神经可塑性而脱颖而出,许多动物研究表明了这一点。这一特性使得右美托咪啶作为一种麻醉剂具有独特的优势,可以避免麻醉过程中可能出现的神经毒性。
泰德·J·科拉德准将 动员战备和陆军预备役事务办公室助理军医总监、陆军预备役医疗司令部军医总监兼副司令 泰德·J·科拉德准将于 2022 年 11 月 11 日担任美国陆军预备役医疗司令部军医总监办公室动员、战备和陆军预备役事务助理军医总监兼副指挥官。 科拉德准将通过南加州大学的 ROTC 项目被任命为少尉医疗服务团军官(正规陆军),在那里他获得了为期 4 年的 ROTC 国家奖学金和陆军 ROTC 优秀学员勋章。 他毕业时获得了生物医学和机械工程理学学士学位。 随后,他获得了科罗拉多大学科罗拉多斯普林斯分校的工商管理硕士学位,并以优异的成绩从美国陆军战争学院 (USAWC) 毕业,获得战略研究硕士学位。 他担任 USAWC 助理教授。他的军事教育包括陆军医疗部 (AMEDD) 军官基础课程;医疗后勤管理课程;战斗伤员护理课程;AMEDD 上尉职业课程;卫生服务计划、作战、情报、安全和训练课程;联合兵种演习;卫生服务人力资源经理课程;指挥和参谋学院;国防战略课程;预备役国家安全课程;旅指挥前课程;高级军官法律培训;医疗战略领导力计划;高级战略艺术计划;国家安全领导力高级经理课程和高级服务学院。BG Collard 最近担任 USAWC 预备役研究的 John Parker 主席。他还担任过军医署长的卫生人力资源陆军预备役顾问。BG Collard 拥有人事、作战和后勤背景,担任过多个领导和参谋职务。先前的职务包括加利福尼亚州圣巴勃罗西部医疗区战备支援组旅指挥官;犹他州道格拉斯堡第 807 医疗司令部(部署支援)人事副参谋长(G-1);华盛顿州刘易斯-麦科德联合基地 (JBLM) 第 6250 美国陆军医院执行官;华盛顿州刘易斯-麦科德联合基地第 7229 医疗支援部队指挥官;华盛顿州塔科马市麦迪根陆军医疗中心部队指挥官 (DIMA);阿富汗加德兹联合特遣部队 1/东部地区司令部阿富汗国家警察首席医疗导师;华盛顿州 JBLM 第一军医疗行动和计划负责人;华盛顿州塔科马市麦迪根陆军医疗中心麻醉和手术服务部行政官;华盛顿州刘易斯堡西部地区医疗司令部动员和行动官;贝塞斯达沃尔特里德陆军医疗中心医疗后勤官 (DIMA)马里兰州;第 10 特种部队组(空降)医疗后勤官,科罗拉多州卡森堡;1-8 步兵营(机械化)医疗排长;科罗拉多州卡森堡第 10 战斗支援医院训练官。BG Collard 的奖章和徽章包括功绩服务勋章(4 簇橡树叶);联合服务嘉奖勋章;陆军嘉奖勋章(1 簇橡树叶);陆军成就勋章(2 簇橡树叶);陆军预备役成就勋章(4 簇橡树叶);阿富汗战役勋章;军事杰出志愿服务勋章;武装部队预备役勋章(附带动员装置和 1 簇橡树叶);海外服务勋带;专家野战医疗徽章;战斗行动徽章和跳伞员徽章。