摘要益生菌枯草芽孢杆菌29784(BS29784)通过生物活性代谢物低黄嘌呤(HPX),烟酸(NIA)(NIA)和Pantothenate(PTH)来维持鸡的肠道健康,从而增强动物的韧性和性能。在这里,使用肠球菌在体外模型中,我们确定了这些代谢产物与肠道弹性的三个支柱之间的功能联系:免疫反应,肠壁和微生物群。我们在体外评估了BS29784营养细胞,孢子和代谢产物的能力,以调节全球免疫调节剂(使用HT-29-NF-κB和HT-29-AP-1报道细胞),肠道完整性),肠道完整性(HT-29-MUC2报道细胞)(HT-29-MUC2报道细胞和CACO-2细胞)以及CACO细胞(CACO-2),以及CACO-2-2。最后,我们使用鸡肉肠含量作为接种,模拟了肠发酵,以确定BS29784代谢产物对微生物群及其发酵型的影响。BS29784营养细胞比孢子更有效地降低了炎症反应,这表明它们的益处与代谢活性有关。为了评估这一假设,我们分别研究了BS29784代谢产物。结果表明,每个代谢产物都有不同的有益作用。pth和niA降低了促炎性途径AP-1和NF-κB的激活。HPX通过增强MUC2表达上调粘蛋白的产生。HPX,NIA和PTH增加了细胞增殖。PTH和HPX通过限制渗透性的增加来提高上皮弹性对炎症挑战。在盲肠发酵中,nia增加了乙酸乙酸盐,HPX增加了丁酸酯,而PTH则增加了乙酸乙酸酯,丁酸酯和丙酸酯。在回肠发酵中,PTH增加了丁酸酯。 所有分子调节菌群,解释了不同的发酵模式。 总的来说,我们证明了BS29784通过其分泌的代谢物在弹性的三条线上作用,从而影响了肠道健康。在回肠发酵中,PTH增加了丁酸酯。所有分子调节菌群,解释了不同的发酵模式。总的来说,我们证明了BS29784通过其分泌的代谢物在弹性的三条线上作用,从而影响了肠道健康。
抽象类胡萝卜素是色素分子,在着色植物,藻类和其他生物中起重要作用。这些分子表现出各种生物学活性,例如抗癌,抗病毒和抗氧化活性。它们的市场规模较大,主要用于食品,饲料和化妆品行业。现有的类胡萝卜素的供应链主要基于从植物中提取和/或某些类胡萝卜素的化学合成。但是,这些策略具有各种限制和缺点,例如受到气候变化的影响,更困难和昂贵的提取过程和环境问题。微生物生物合成是一种克服这些问题并在短时间内为工业生产提供优势的有效方法。在这项研究中,我们旨在使用遗传设计的微生物生产具有生物合成的高添加类胡萝卜素。 内生假单胞菌sp。 102515的基因组与CRISPR-CAS9和Zeaxantin葡萄糖硅氧转移酶(CRTX),番茄红素β-溶质酶(CRTY)和β-胡萝卜素羟化酶(CRTZ)的基因排列。 假单胞菌sp。 102515的δCRTX,δCRTY和δCRTZ突变菌株。 另一方面,产生了携带CRTW,TıPep和Vajah-CACCS M40基因的过量表达质粒,并转染素以合成astantin,firakanine和capantine/capantine/capsorubin与CRTX突变体的突变体合成。 因此,这项研究导致了基因工程和内生细菌中有价值的类胡萝卜素的生物合成。在这项研究中,我们旨在使用遗传设计的微生物生产具有生物合成的高添加类胡萝卜素。内生假单胞菌sp。102515的基因组与CRISPR-CAS9和Zeaxantin葡萄糖硅氧转移酶(CRTX),番茄红素β-溶质酶(CRTY)和β-胡萝卜素羟化酶(CRTZ)的基因排列。假单胞菌sp。102515的δCRTX,δCRTY和δCRTZ突变菌株。另一方面,产生了携带CRTW,TıPep和Vajah-CACCS M40基因的过量表达质粒,并转染素以合成astantin,firakanine和capantine/capantine/capsorubin与CRTX突变体的突变体合成。因此,这项研究导致了基因工程和内生细菌中有价值的类胡萝卜素的生物合成。从突变菌株和过度表达菌株获得的额外纹理表明,遗传设计的菌株产生相关的类胡萝卜素,例如玉米黄嘌呤,β-胡萝卜素和番茄红素。
HIC3 HIC3 Desc 标签名称 通用名称 医疗补助最低年龄 医疗补助最高年龄 PA 要求 A1A 洋地黄苷 地高辛 0.05 毫克/毫升溶液 地高辛 0 999 否 地高辛 0.125 毫克片剂 地高辛 0 999 否 地高辛 0.25 毫克片剂 地高辛 0 999 否 地高辛 125 微克片剂 地高辛 0 999 否 地高辛 250 微克片剂 地高辛 0 999 否 A1B 黄嘌呤 咖啡因 CIT 60 毫克/3 毫升口服 咖啡因柠檬酸盐 0 999 否 咖啡因 CIT 60 毫克/3 毫升小瓶 咖啡因柠檬酸盐 0 999 否 THEO-24 ER 100 MG 无水茶碱胶囊 0 999 否 THEO-24 ER 200 MG 无水茶碱胶囊 0 999 否 THEO-24 ER 300 MG 无水茶碱胶囊 0 999 否 THEO-24 ER 400 MG 无水茶碱胶囊 0 999 否 茶碱 80 MG/15 ML 无水茶碱杯 0 999 否 茶碱 80 MG/15 ML 无水茶碱溶液 0 999 否 茶碱 ER 100 MG 无水茶碱片剂 0 999 否 茶碱 ER 200 MG 无水茶碱片剂 0 999 否 茶碱 ER 300 MG 无水茶碱片剂 0 999 否 茶碱 ER 400 MG 无水茶碱片剂 0 999 否 茶碱 ER 450 MG 无水茶碱片剂 0 999 否 茶碱 ER 600 MG 无水茶碱片剂 0 999 否 A1C 正性肌力药物 多巴胺 1,000 MG/250 ML D5W 葡萄糖中 5% 的盐酸多巴胺 0 999 否 多巴胺 250 MG/20 ML 小瓶盐酸多巴胺 0 999 否多巴酚丁胺 250 MG/250 ML-D5W 葡萄糖中盐酸多巴酚丁胺 5 % 0 999 否 多巴酚丁胺 500 MG/250 ML D5W 葡萄糖中盐酸多巴酚丁胺 5 % 0 999 否 乳酸米力农 10 MG/10 ML VL 乳酸米力农 0 999 否 乳酸米力农 20 MG/20 ML VL 乳酸米力农 0 999 否 乳酸米力农 50 MG/50 ML VL 乳酸米力农 0 999 否 米力农-D5W 20 MG/100 ML 乳酸米力农/D5W 0 999 否
Akt¼蛋白激酶B; ALP¼碱性磷酸酶; a-sma¼a -smooth肌肉肌动蛋白; AMPK¼腺苷单磷酸 - 活化的蛋白激酶; ANP¼14钠肽; Arn¼血管紧张素受体Neprilysin抑制剂; AST¼天冬氨酸氨基转移酶; ATF-4¼激活转录因子4; BAX¼Bcl-2相关X蛋白; B-MHC¼B-肌球蛋白重链; bohb¼b-羟基丁酸酯; BNP¼B型纳特里尿肽; CAT¼过氧化氢酶; CFR¼冠状动脉储备; CK-MB¼肌酸激酶MB; CRS¼心脏综合征; CTNT¼心脏肌钙蛋白T;潮湿¼损伤相关的分子模式; dox¼阿霉素; ECG¼心电图; ef¼射血分数; EIF-2a¼真核生物起始因子2 a; Er¼内质网; ERK¼1.1.1/1/14; FGF¼FIMBLAST生长因子; FS¼部分缩短; g-csf¼1/1/14 GM-CSF¼1/1/1/14 GRP78¼葡萄糖调节的蛋白78; HTN¼高血压; I.P.¼腹膜内; IL¼白痴; IL¼白痴; IL¼白痴; iNOS¼诱导一氧化氮合酶; LDH¼14乳酸脱氢酶; LV¼左心室; lvedd¼左心室末端直径; lvesd¼左心室末端音直径; LVIDD¼左心内直径在末端末端;末端收缩处的LVIDS¼左心内直径; MDA¼MALONDIALLEDEDEDE; MMP¼基质金属肽酶; MPO¼髓过氧化物酶;雷帕霉素的mtor¼哺乳动物靶标; mybpc3¼结合蛋白C3; MyD88¼髓样差异反应88; NCD¼正常食物饮食; NF-kb¼核因子kappa-b; NLRP3¼NOD样受体蛋白3;无¼一氧化氮; NOX-1¼NADPH氧化酶1; NOX-2¼NADPH氧化酶2; NRF2¼核因子红细胞2 - 相关因子2; NT-Proanp¼n末端Pro - 心房纳地肽; NT-PROBNP¼N末端Pro - B型纳地尿肽; p38¼p38有丝分裂原激活的蛋白激酶; PARP¼聚(二磷酸腺苷 - 核糖)聚合酶; PERK¼蛋白激酶R样性内质网激酶; PGC¼过氧化物酶体增殖物 - 激活的受体共激活剂; PI3K¼磷酸肌醇3-激酶; PPAR¼过氧化物酶体增殖物 - 活化受体; QTC¼校正的QT; SIRT1¼SIRTUIN1; Sirt3¼Sirtuin3; Smad3¼母亲反对脱皮的同源物3; SOD¼超氧化物歧化酶; TGF¼转化生长因子; TLR9¼Toll样受体9; TNF¼肿瘤坏死因子; XO¼黄嘌呤氧化酶;其他缩写如表1所示。
psilocybin是一种天然发生的色氨酸生物碱前药,目前正在研究用于治疗一系列精神疾病。临床前报告表明,含psilocybin的蘑菇提取物或“全光谱”(迷幻)蘑菇提取物(PME)的生物学作用可能与化学合成的psilocybin(PSIL)的生物学作用可能不同。我们将PME与PSIL的影响对雄性C57BL/6J小鼠中的神经可塑性相关的突触蛋白和额叶皮层代谢组纤维的影响,神经可塑性相关的突触蛋白和额叶皮层代谢组纤维的影响。HTR测量在20分钟内显示出PSIL和PME的相似作用。脑标本(额叶皮层,海马,杏仁核,纹状体)使用蛋白质印迹分析突触蛋白,GAP43,PSD95,Synaptophysin和sv2a。这些蛋白质可以用作突触可塑性的指标。治疗三天后,突触蛋白的增加最少。11天后,额叶皮层中的PSIL和PME显着增加了GAP43(分别为p = 0.019; p = 0.039)和海马(P = 0.015; p = 0.027; p = 0.027)和突触possinpocyin and Synaptophysin在海马中(p = 0.041; p = 0.041; p = 0.05)和am amy; p = 0.03(p = 0.03)(p = 0.03);psil在杏仁核中增加了SV2A(p = 0.036),并且PME在海马中这样做(p = 0.014)。在纹状体中,仅PME增加突触素(P = 0.023)。分别分析这些大脑区域对PSD95的PSIL或PME对PSD95没有显着影响。与氧化应激和能量产生途径相关的嘌呤鸟嘌呤,甲黄嘌呤和肌苷显示出从车辆到PSIL再到PME的逐渐下降。的嵌套方差分析(ANOVA)显示,在所有大脑区域中,四种蛋白质中的每一种都显着增加,以进行PME和媒介物控制,而仅在海马和杏仁核中观察到显着的PSIL效应,并且仅在Hippocampus和Amygdala中观察到,并且仅限于PSD95和SV2A。利用毛细管电泳的非靶向极性代谢组学 - 傅立叶变换质谱法(CE-FEFTM)进行了前额叶皮层的代谢组学分析,并在PME和媒介物组之间显示出差异代谢分离。总而言之,我们的突触蛋白发现表明,PME对突触可塑性具有比PSIL更有效,更长时间的作用。我们的代谢组学数据支持从惰性车辆通过化学psilocybin到PME的梯度进一步支持差异效应。需要进一步的研究来确认和扩展这些发现,并确定与单独使用psilocybin相比,可能导致PME效应增强的分子。
(1)诊断和STA&S&CAL精神障碍手册。第五迪和ON。华盛顿特区:美国精神病学协会和2013年。H+P://dsm.psychiatryonline.org/doi/full/10.1176/appi.books.9780890425596.dsm01#x9888088808.2737873(2)并反对多动症的过度诊断。” (2007)。+ENAL疾病的日记,11(2):106-13。(3)Wolraich,M.L.,McKeown,R.E.,Visser,S.N.,Bard,D.,Cu {多动症的患病率:在两个州的四个学区的诊断和治疗。A+EN&关于疾病的杂志,18(7),563-575。(4)Hughes,J。R.和Hale,K。L.儿童的ca虫和其他甲基黄嘌呤的行为影响。(1998)。实验和临床心理药理学,6(1),87-95。doi:10.1037/1064--1297.6.1.87(5)Hartne+,N。D.,Nelson,J.M。,&Rinn,A。N.(2003)。giled还是多动症?误诊的可能性。(2003)。Roeper评论,26(2),73。(6)Webb,J。T.和La&Mer,D。Adhd和盖帽的孩子。(1993)。excep&onal Children,60(2),183。(7)“ Novar&S Ritalin La。”食品和药品行政行政。Web。h+p://www.accessdata.fda.gov/drugsanda_docs/label/2013/021284S020LBL.pdf(8)Zebra Finfer的未发表实验,由Rebecca Brenner,Anthony Oliveri和Anthony Oliveri和Ed eed Levin(9)Devito,E。E. L.,Ersche,K.D.,Clark,L.,Salmond,C.H.,Dezsery,A.M。,Sahakian,B.J。(2008)。(2001)。哌醋甲酯对A+EN及其征服/HyperAc&Vity疾病的决策的影响。生物精神病学,64(7):636--9。h+p://dx.doi.org/10.1016/j.biopsych.2008.04.017。(10)Moll,G.H.,Hause,S。Ruther,E.,Rothenberger,A.儿童和青少年心理药理学杂志。11(1):15- – 24。(11)Wang G-J,Volkow ND,Wigal T,Kollins SH,Newcorn JH等。(2013)长期的S&Mulant治疗在+EN和defifif的HyperAC&VE疾病中对脑多巴胺转运蛋白水平的影响。(2013)。PLOS ONE 8(5):E63023。doi:10.1371/journal.pone.0063023(12)“ a+en&on-in-de-de-fifien hyperAc&ve障碍:数据和sta&s&s&cs。” (2014)。疾病控制和预防及开通中心。(13)Wigal,T.,Greenhill,L.里德尔(M.ADHD学龄前儿童中甲化酯的安全性和耐受性(2006)美国儿童与青少年精神病学会杂志,45(11):1294 - 1303。H+P://dx.doi.org/10.1037/1064--1297.9.2.163。 (15)Loe I.M.,Feldman H.M. (2007)。 小儿心理学杂志。 32(6):643--654。H+P://dx.doi.org/10.1037/1064--1297.9.2.163。(15)Loe I.M.,Feldman H.M.(2007)。小儿心理学杂志。32(6):643--654。h+p://dx.doi.org/10.1097/01.chi.0000235082.63156.27(14) ADHD(2001)实验和临床心理药物学9(2)163-175的青少年的学术表现和课堂行为的生态有效衡量的影响对甲基苯甲酸酯的影响。
代码 编号 描述 CPT 0006M 肿瘤学(肝脏),利用新鲜肝细胞癌肿瘤组织,测定 161 个基因的 mRNA 表达水平,包括甲胎蛋白水平,以算法报告风险分类器 0007M 肿瘤学(胃肠道神经内分泌肿瘤),利用全外周血对 51 个基因进行实时 PCR 表达分析,以算法报告肿瘤疾病指数的列线图 0019M 心血管疾病,血浆,通过基于适体的微阵列分析蛋白质生物标志物,以算法报告高危人群中 4 年发生冠状动脉事件的可能性 0041U 伯氏疏螺旋体,通过免疫印迹检测 5 个重组蛋白组抗体,IgM 0042U 伯氏疏螺旋体,通过免疫印迹检测 12 个重组蛋白组抗体,IgG 0063U 神经病学(自闭症),通过 LCMS/MS 检测 32 个胺,使用血浆,算法报告为与自闭症谱系障碍相关的代谢特征 0108U 胃肠病学(巴雷特食管),全幻灯片数字成像,包括形态分析、9 种蛋白质生物标志物(p16、AMACR、p53、CD68、COX-2、CD45RO、HIF1a、HER- 2、K20)的计算机辅助定量免疫标记和形态学、福尔马林固定石蜡包埋组织,算法报告为进展为高度发育不良或癌症的风险 0170U 神经病学(自闭症谱系障碍 [ASD]),RNA,下一代测序,唾液,算法分析,结果报告为 ASD 诊断的预测概率 0258U 自身免疫(牛皮癣),mRNA,下一代测序,50-100 个基因的基因表达谱,使用粘性贴片进行皮肤表面收集,算法报告为对牛皮癣生物制剂的反应可能性0263U 神经病学(自闭症谱系障碍 [ASD]),16 种中心碳代谢物(即 α 酮戊二酸、丙氨酸、乳酸、苯丙氨酸、丙酮酸、琥珀酸、肉碱、柠檬酸、富马酸、次黄嘌呤、肌苷、苹果酸、S-磺基半胱氨酸、牛磺酸、尿酸和黄嘌呤)的定量测量,液相色谱串联质谱法 (LC-MS/MS),血浆,算法分析,结果报告为阴性或阳性(针对 ASD 的代谢亚型)0288U 肿瘤学(肺),mRNA,11 个基因(BAG1、BRCA1、CDC6、CDK2AP1、ERBB3、FUT3、IL11、LCK、RND3、SH3BGR、WNT3A)和 3 个参考基因(ESD、TBP、YAP1)的定量 PCR 分析,福尔马林固定石蜡包埋 (FFPE) 肿瘤组织,算法解释报告为复发风险评分 0289U 神经病学(阿尔茨海默病),mRNA,通过 24 个基因的 RNA 测序进行基因表达分析,全血,算法报告为预测风险评分 0290U 疼痛管理,mRNA,通过 36 个基因的 RNA 测序进行基因表达分析,全血,算法报告为预测风险评分
摘要全球中风是死亡的第二大主要原因,也是死亡和残疾的第三大主要原因。中风估计的全球经济负担每年超过8.91亿美元。在三十年(1990- 2019年)中,发病率增加了70%,死亡人数增长了43%,患病率增加了102%,达利斯(Dalys)增加了143%。超过1亿人受到中风影响,大约76%是全球记录的缺血性中风(IS)。在上下文上,缺血性中风进入了包括研究人员,医疗保健行业,经济学家和政策制定者在内的多专业团体的特定重点。缺血性中风的危险因素表现出足够的空间,用于基本(次优健康)和继发性(临床表现出有助于中风风险的临床表现的附带疾病)的经济高效预防干预措施。这些风险是相互关联的。例如,久坐的生活方式和有毒环境都会引起线粒体压力,全身性低度炎症和加速衰老。炎症是一种与加速衰老和中风不良相关的低度炎症。压力超负荷,线粒体生物能力降低和低镁血症与包括青少年在内的所有年龄段的心脏和大脑中的全身血管痉挛和缺血性病变有关。叶酸中的饮食模式不平衡,但富含红色和加工的肉,精制的谷物和含糖饮料与高舒适的人性血症,全身性炎症,小血管疾病和增加有关。收集的数据表明,相关的风险和相应的分子途径相互关联。正在进行的3pm研究对欧洲预测,预防和个性化医学协会(EPMA)促进的人群中的弱势群体(EPMA)展示了对基于泪液的健康风险评估评估的整体患者友好型非侵入性方法的有希望的结果,该方法是由基于AI的生物传感器和AI基于AI的多技术数据来解释的epma Compert the Epma专家。举例来说,IS涉及的分子模式与糖尿病性视网膜病变是糖尿病患者IS风险的早期指标。仅说明其中的一些,例如5-氨基乙烯酸/途径,这也是改变线粒体模式,失眠,应力调节和微生物群 - 脑脑串扰的调节的特征。此外,神经酰胺被认为是心脏代谢疾病中氧化应激和炎症的介体,对线粒体呼吸链功能和裂变/融合活性,睡眠 - 效果行为改变,血管僵硬和重塑的影响产生负面影响。黄嘌呤/途径调节与线粒体稳态和压力驱动的焦虑样行为以及动脉僵硬的分子机制有关。为了评估个人健康风险,机器学习的应用(AI工具)对于通过多参数分析执行的准确数据解释至关重要。包括年轻人口的需求以及在初级和二级护理中的个性化风险评估,成本效能,创新技术和筛查计划的应用,专业人士的高级教育措施以及普通人群的高级教育措施 - 这都是从反应性医疗服务到3PM的范式更改为总体上的范围,由EPMA的整体促进。
APCC,动物毒物控制,2023。disponivel em:https://www.aspca.org/pet- care/abinal-poison-control。Acesso EM:20/03/2023。Allen,D。H.,Van Nunen,S.,Loblay,R。等。对食物的不利反应。澳大利亚医学杂志V.5,第37-42页,1984年。Arnaud,M.J。动物和人类天然甲基黄嘌呤的药代动力学和代谢。手。EXP。Pharmacol。V.200,p33–91,2011。Beynen AC。宠物食品中的绿茶提取物。Bonny Canteen,V.1,P.8-15,2020。Carciofi,A.C。;等。 六个碳水化合物源对狗饮食消化率以及餐后葡萄糖和胰岛素反应的影响。 J. Anim。 生理学。 anim。 Nutr,V.92,p.3266–336,2008。 Craft,E.M.,Powell,L.L。 巧克力和咖啡因。 in:Osweiler G,Hovda L,Brutlag A,Lee JA,编辑。 Blackwell的五分钟兽医咨询临床伴侣:小动物毒理学,第421-428页,2011年。 Craig,J。M.狗和猫的食物不耐受。 《小动物实践杂志》,第2卷,第77-85页,2019年。https://doi.org/10.1111/jsap.12959 Dawra,R.,Sah,R.P.,Dudeja,Dudeja,V.,Rishi,Rishi,Rishi,Rishi,L. 刺激性胰蛋白酶原激活介导急性胰腺炎小鼠的胰腺损伤的早期阶段,但没有炎症。 胃肠病学,第141页,第2210–2217页,2011年。 Eteng,M。等。 咖啡因和神现毒性的最新进展:综述。 Fredholm,B.B。 ;施普林格:纽约,p。 1–9,2011。Carciofi,A.C。;等。六个碳水化合物源对狗饮食消化率以及餐后葡萄糖和胰岛素反应的影响。J. Anim。生理学。anim。Nutr,V.92,p.3266–336,2008。Craft,E.M.,Powell,L.L。巧克力和咖啡因。in:Osweiler G,Hovda L,Brutlag A,Lee JA,编辑。Blackwell的五分钟兽医咨询临床伴侣:小动物毒理学,第421-428页,2011年。Craig,J。M.狗和猫的食物不耐受。《小动物实践杂志》,第2卷,第77-85页,2019年。https://doi.org/10.1111/jsap.12959 Dawra,R.,Sah,R.P.,Dudeja,Dudeja,V.,Rishi,Rishi,Rishi,Rishi,L.刺激性胰蛋白酶原激活介导急性胰腺炎小鼠的胰腺损伤的早期阶段,但没有炎症。胃肠病学,第141页,第2210–2217页,2011年。Eteng,M。等。 咖啡因和神现毒性的最新进展:综述。 Fredholm,B.B。 ;施普林格:纽约,p。 1–9,2011。Eteng,M。等。咖啡因和神现毒性的最新进展:综述。Fredholm,B.B。;施普林格:纽约,p。 1–9,2011。V.3,第231–243页,1997年。在甲基氧剂中; Fredholm,B.B。编辑。Fink,F。和Guiton,S。巧克力中毒。医学医学,第331页,第633页,2005年。收集vv。诊所应用培养基两种酸。in:当前R,CK CK,mynasty,社论。访问华丽的:评估。圣保罗:Manole,第439-54页,2002年。 缺乏,路径的病理学,画廊,肝外胆道和安帕莱地区;圣保罗:Manole,第439-54页,2002年。缺乏,路径的病理学,画廊,肝外胆道和安帕莱地区;
S03CA | 皮质类固醇和抗感染药物的复方药 S02CA | 皮质类固醇和抗感染药物的复方药 S | 感觉器官 R06AD | 吩噻嗪衍生物 R05FA | 鸦片衍生物和祛痰药 R03DC | 白三烯受体拮抗剂 R03DA | 黄嘌呤 R03CC | 选择性β-2-肾上腺素受体激动剂 R03BB | 抗胆碱能药物 R03BA | 糖皮质激素 R03AL | 肾上腺素能药物与抗胆碱能药物的复方药 R03AK | 吸入性β-肾上腺素能药物和皮质类固醇 R03AC | 选择性β-2-肾上腺素能受体激动剂 R02AX | 其他咽喉制剂 R01AD | 皮质类固醇 R | 呼吸系统 P02CA | 苯并咪唑衍生物 P | 抗寄生虫产品 N07BB |用于治疗酒精依赖的药物 N07BA | 用于治疗尼古丁依赖的药物 N07AA | 抗胆碱酯酶药物 N02CX | 其他抗偏头痛药物 N | 神经系统 M03BB | 恶唑、噻嗪和三嗪衍生物 M03BA | 氨基甲酸酯 M01AX | 其他非甾体抗炎和抗风湿药 M01AE | 丙酸衍生物 M01AB | 乙酸衍生物和相关物质 M | 肌肉骨骼系统 L01AA | 氮芥类似物 L | 抗肿瘤和免疫调节剂 J02AC | 三唑衍生物 J01FA | 大环内酯类 J01CR | 青霉素组合,包括β内酰胺酶抑制剂 J01CE | 对β内酰胺酶敏感的青霉素 J01AA | 四环素类 J |全身用抗感染药 H02AB | 糖皮质激素 H | 全身激素 G03FB | 孕激素和雌激素,序贯制剂 G03FA | 孕激素和雌激素,固定组合 G03DC | 雌二醇衍生物 G03DA | 孕烯(4)衍生物 G03CX | 其他雌激素 G03CB | 合成雌激素,普通 G03AC | 孕激素 G03AA | 孕激素和雌激素,固定组合 G01AF | 咪唑衍生物 G | 生殖泌尿系统和性激素 D10BA | 用于治疗痤疮的类视黄酸 D07CC | 皮质类固醇,强效,与抗生素复方 D07CB | 皮质类固醇,中效,与抗生素复方 D07CA | 皮质类固醇,弱效,与抗生素复方 D07BC |强效皮质类固醇,与防腐剂复方 D07BB | 中效皮质类固醇,与防腐剂复方 D07AD | 强效皮质类固醇(IV 类) D01AC | 咪唑和三唑衍生物 D01AA | 抗生素 D | 皮肤病学药物 C08DB | 苯并噻嗪类衍生物 C07CB | 选择性β受体阻滞剂和其他利尿剂 C07BB | 选择性β受体阻滞剂和噻嗪类 C07AB | β受体阻滞剂 C07AA | β受体阻滞剂,非选择性 C05AA | 皮质类固醇 C03EA | 低限利尿剂和保钾剂 C03DA | 醛固酮拮抗剂 C03CB | 磺胺类和钾复方药 C03CA | 袢利尿剂 C03AB | 噻嗪类和钾 C01AA | 洋地黄苷 C | 心血管系统 B02BA | 维生素 K B01AF | 直接 Xa 因子抑制剂 B01AA | 维生素 K 拮抗剂 B | 血液和造血器官 A12BA | 钾 A07AC | 咪唑衍生物 A02BC | 质子泵抑制剂 A02BA | H2 受体拮抗剂 A01AD | 其他局部口服治疗药物 A01AB | 用于局部口服治疗的抗感染药和防腐药 A | 消化系统