摘要 斯塔加特黄斑营养不良症(Stargardt 病;STGD1;OMIM 248200)是最常见的遗传性黄斑营养不良症。STGD1 是一种常染色体隐性遗传病,由大 ABCA4 基因(OMIM 601691)中的多个致病序列变异引起。在理解临床和分子特征以及潜在病理生理学方面取得了重大进展,导致许多已完成、正在进行和计划中的新疗法人体临床试验。本简明综述的目的是描述(1)该疾病的详细表型和基因型特征、多模态成像发现、疾病的自然史和发病机制,(2)多种研究途径和治疗干预,包括药理学、细胞疗法和多种类型的基因疗法,这些疗法已经或正在研究中,以及(3)旨在通过替换整个 6.8 kb ABCA4 开放阅读框来治疗 STGD1 的激动人心的新型治疗方法。
埃伯哈德·卡尔斯(Eberhard Karls)埃伯哈德·卡尔斯大学(Eberhard Karls),埃伯哈德·卡尔斯大学(Eberhard Karls),72076,德国图宾根(Tübingen),b德国b眼科系,埃伯哈德·卡尔斯(Eberhard Karls),埃伯哈德·卡尔斯(Eberhard Karls D MRC人类遗传学单位,遗传学与癌症研究所,爱丁堡大学,爱丁堡大学,EH4 2XU,英国E e E e e e H4 2XU,E伊拉斯mus大学医学中心,3015GD,鹿特丹3015GD,荷兰,荷兰,荷兰,伊斯兰斯大学医学中心,3015CE,NETHERLANDS GRITANT,NETHERLANDS GILLAINT,NETHERLANDS, Duisburg-Essen,45117,德国埃森,H Lydia Becker免疫学与炎症研究所,生物学,医学与健康教职员工,曼彻斯特大学,曼彻斯特大学,曼彻斯特大学,M13 9PT,英国I Ophthalmologoly of Ophthalmologoly,Radboudumc,6525EX,Nijmegen,Nijmegen,NETHERLAINS JMEGEN,NETHERLAINS JOMENTIME ISTISTIM,NETHERLAINS JORSINTIME,NETHERLAINS JORSENTMENISTMED, Moorfields眼科医院NHS基金会信托基金会,UCL眼科研究所,伦敦,EC1V 2PD,英国K K-4031,CH-4031,瑞士,瑞士,埃伯哈德·卡尔斯(Eberhard Karls)埃伯哈德·卡尔斯大学(Eberhard Karls),埃伯哈德·卡尔斯大学(Eberhard Karls),72076,德国图宾根(Tübingen),b德国b眼科系,埃伯哈德·卡尔斯(Eberhard Karls),埃伯哈德·卡尔斯(Eberhard Karls D MRC人类遗传学单位,遗传学与癌症研究所,爱丁堡大学,爱丁堡大学,EH4 2XU,英国E e E e e e H4 2XU,E伊拉斯mus大学医学中心,3015GD,鹿特丹3015GD,荷兰,荷兰,荷兰,伊斯兰斯大学医学中心,3015CE,NETHERLANDS GRITANT,NETHERLANDS GILLAINT,NETHERLANDS, Duisburg-Essen,45117,德国埃森,H Lydia Becker免疫学与炎症研究所,生物学,医学与健康教职员工,曼彻斯特大学,曼彻斯特大学,曼彻斯特大学,M13 9PT,英国I Ophthalmologoly of Ophthalmologoly,Radboudumc,6525EX,Nijmegen,Nijmegen,NETHERLAINS JMEGEN,NETHERLAINS JOMENTIME ISTISTIM,NETHERLAINS JORSINTIME,NETHERLAINS JORSENTMENISTMED, Moorfields眼科医院NHS基金会信托基金会,UCL眼科研究所,伦敦,EC1V 2PD,英国K K-4031,CH-4031,瑞士,瑞士,埃伯哈德·卡尔斯(Eberhard Karls)埃伯哈德·卡尔斯大学(Eberhard Karls),埃伯哈德·卡尔斯大学(Eberhard Karls),72076,德国图宾根(Tübingen),b德国b眼科系,埃伯哈德·卡尔斯(Eberhard Karls),埃伯哈德·卡尔斯(Eberhard Karls D MRC人类遗传学单位,遗传学与癌症研究所,爱丁堡大学,爱丁堡大学,EH4 2XU,英国E e E e e e H4 2XU,E伊拉斯mus大学医学中心,3015GD,鹿特丹3015GD,荷兰,荷兰,荷兰,伊斯兰斯大学医学中心,3015CE,NETHERLANDS GRITANT,NETHERLANDS GILLAINT,NETHERLANDS, Duisburg-Essen,45117,德国埃森,H Lydia Becker免疫学与炎症研究所,生物学,医学与健康教职员工,曼彻斯特大学,曼彻斯特大学,曼彻斯特大学,M13 9PT,英国I Ophthalmologoly of Ophthalmologoly,Radboudumc,6525EX,Nijmegen,Nijmegen,NETHERLAINS JMEGEN,NETHERLAINS JOMENTIME ISTISTIM,NETHERLAINS JORSINTIME,NETHERLAINS JORSENTMENISTMED, Moorfields眼科医院NHS基金会信托基金会,UCL眼科研究所,伦敦,EC1V 2PD,英国K K-4031,CH-4031,瑞士,瑞士,
在注射Ozurdex®(地塞米松玻璃体内意外突出)的日子内,重要的安全信息(续)患者咨询信息(续),您可能有可能发生潜在并发症的风险,包括(但不限于严重眼部感染或增加眼睛压力)。如果您的眼睛变红,对轻,痛苦或发展视力变化,则应从眼科医生那里寻求立即护理。您可能会在接收注射后会遇到暂时的视觉模糊,并且在您的视力得到解决之前,不应开车或使用机械。
在Henle环的上升肢和远端曲折小管的升节连接处,肾单位的专门细胞的抽象管状流体吸收,称为Macula densa,释放出引起相邻亲和力动脉血管收缩的化合物。 这种肾小管反馈响应的激活降低了肾小管的肾小球毛细血管,因此降低了肾小球过滤率。 在负反馈模式下,肾小管毛细血管反应响应功能将肾小球毛细管与管状流体递送和重吸收相关联。 该系统与肾脏自动调节,肾素释放以及长期体液和血压稳态有关。 在这里我们报告说,在黄斑densa中产生的精氨酸衍生的一氧化氮是一种额外的细胞间信号分子,在管状液体 - 液体重吸收过程中释放,并反驳传入动脉的血管收缩。 对大鼠小脑组成型一氧化氮合酶的抗体染色了大鼠黄斑丁莎细胞。 用N'-甲基-l-Arginlne(一氧化氮合酶的抑制剂)或pyocyanin(一种脂溶性 - 溶解剂抑制剂)(orndothelium derved降低因子)的微量灌注(一种氮溶解因子),表明一二个硝酸氧化物的含量增长了,并增长了脂肪囊液,并且这种作用被预防管状液体重吸附的药物阻塞。 我们得出的结论是,黄斑densa细胞中的一氧化氮合酶通过管状液体的重吸收激活,并将血管舒张成分介导至管状粒细胞反馈反应。在Henle环的上升肢和远端曲折小管的升节连接处,肾单位的专门细胞的抽象管状流体吸收,称为Macula densa,释放出引起相邻亲和力动脉血管收缩的化合物。这种肾小管反馈响应的激活降低了肾小管的肾小球毛细血管,因此降低了肾小球过滤率。在负反馈模式下,肾小管毛细血管反应响应功能将肾小球毛细管与管状流体递送和重吸收相关联。该系统与肾脏自动调节,肾素释放以及长期体液和血压稳态有关。在这里我们报告说,在黄斑densa中产生的精氨酸衍生的一氧化氮是一种额外的细胞间信号分子,在管状液体 - 液体重吸收过程中释放,并反驳传入动脉的血管收缩。对大鼠小脑组成型一氧化氮合酶的抗体染色了大鼠黄斑丁莎细胞。用N'-甲基-l-Arginlne(一氧化氮合酶的抑制剂)或pyocyanin(一种脂溶性 - 溶解剂抑制剂)(orndothelium derved降低因子)的微量灌注(一种氮溶解因子),表明一二个硝酸氧化物的含量增长了,并增长了脂肪囊液,并且这种作用被预防管状液体重吸附的药物阻塞。我们得出的结论是,黄斑densa细胞中的一氧化氮合酶通过管状液体的重吸收激活,并将血管舒张成分介导至管状粒细胞反馈反应。这些发现暗示着精氨酸衍生的一氧化氮在体液 - 体积和血压稳态中的作用,此外它除了在内皮和神经传递中确定的作用在调节血管张力中的作用。
摘要 灵敏且稳健的视网膜功能结果测量对于老年性黄斑变性 (AMD) 的临床试验至关重要。最近的一项发展是实施人工智能 (AI),根据多模态成像的结果推断心理物理检查的结果。我们对 PubMed 和 Web of Science 等中引用的当前文献进行了审查,关键词为“人工智能”和“机器学习”,结合“视野测量”、“最佳矫正视力 (BCVA)”、“视网膜功能”和“老年性黄斑变性”。到目前为止,基于 AI 的结构功能相关性已被用于推断常规视野、眼底控制视野和视网膜电图数据,以及 BCVA 和患者报告结果测量 (PROM)。在新生血管性 AMD 中,BCVA 推断(以下称为推断 BCVA)可以估计 BCVA 结果,其均方根误差约为 7 – 11 个字母,与实际视力评估的准确性相当。此外,基于 AI 的结构功能相关性可以成功推断眼底控制视野 (FCP) 结果,包括中间视觉以及暗适应 (DA) 青色和红色测试(以下称为推断灵敏度)。可以通过添加简短的 FCP 检查来增强推断灵敏度的准确性,并且对于中间视觉、DA 青色和 DA 红色测试,平均绝对误差 (MAE) 可达到 ~3 – 5 dB。基于多模态成像的推断 BCVA 和推断视网膜灵敏度可被视为未来介入临床试验的准功能替代终点。
指南:•本政策未证明福利的福利或授权,这是由每个个人保单持有人条款,条件,排除和限制合同指定的。它不构成有关承保或报销/付款的合同或担保。自给自足的小组特定政策将在小组补充计划文件或个人计划决策中指导其他情况时取代该一般政策。•最重要的是通过编码逻辑软件适用于所有医疗主张的编码编辑,以评估对公认国家标准的准确性和遵守。•本医疗政策仅用于指导医疗必要性,并解释用于协助做出覆盖决策和管理福利的正确程序报告。范围:X专业X设施描述:黄斑变性是60岁以下人群严重视力丧失的主要原因,发生在视网膜的中部(黄斑)恶化时。由于该疾病随着年龄的增长而发展,因此通常称为与年龄相关的黄斑变性(AMD)。AMD估计在美国的患病率比美国的非洲裔美国人更频繁地影响欧洲血统的人。AMD是一种多因素或复杂疾病,涉及遗传和非遗传(例如年龄,吸烟)影响。已经提出了对某些遗传基因座变体的测试,以预测发展晚期AMD的风险。对AMD的市售基因测试旨在确定那些有发展高级AMD风险的人。amd分为干燥形式,与缓慢进行性视力丧失和湿形形式有关,这可能与快速进行性和严重的视力丧失有关。市售测试包括但不限于以下内容:
(OCT) 图像,一些研究成功地使用 AI 来检测单一疾病表现的存在,例如视网膜内积液的存在、视网膜黄斑硬化症的存在或黄斑液的量化。2–4 该领域的一种可能的 AI 应用是为居住在缺乏眼科医生或训练有素的验光师的地区患者提供筛查和诊断帮助。然而,现代网络包含数百万个学习到的连接。总的趋势是设计更深、更复杂的网络以实现更高的准确性。这些人工智能程序通常需要高科技和昂贵的计算机系统,其中包含先进的图形处理单元,而这些单元通常是医疗保健不足或低收入地区的公用事业所负担不起的。在这种情况下,基于智能手机的高精度、低设备要求的移动人工智能系统极其重要和有用。智能手机应用程序 (app) 和移动机器人通常只需要较低的内存和能耗。5 因此,开发了一种高效的网络架构 MobileNet,以满足移动和嵌入式视觉应用程序的设计要求。更小更快的模型使用宽度乘数和分辨率乘数,以合理的精度来减少尺寸和延迟。与其他模型相比,使用 MobileNets 的程序表现出优越的尺寸、速度和精度特性。6
晚期 AMD 可分为两种亚型:晚期干性 AMD [称为地图样萎缩 (GA)] 和新生血管性(“湿性”)AMD (nAMD)。GA 是由上述机制导致的光感受器和视网膜色素上皮 (RPE) 细胞进行性、不可逆性丧失所致 (11)。湿性 AMD 被认为是由脉络膜中的异常血管生长到正常无血管的视网膜下层和 RPE 下层引起的,这一过程称为脉络膜新生血管 (CNV) (3,5)。CNV 被认为是视网膜黄斑硬化症积聚、RPE 脉络膜血液供应中断以及诱导血管生成信号蛋白表达的缺氧条件等多种因素共同作用的结果 (5)。如果不治疗,nAMD 会导致视网膜渗出、黄斑下出血和视网膜下纤维化,从而严重损害视力。
图4病例和亚组分析。a。 CFP和OCTA的图像代表性眼睛的图像。预测是由人类分级器(具有10年经验的眼科医生3)和GNN-MSVL模型(具有跳线n = 2)做出的。左:DMI阳性的眼睛,人类分级器和模型都正确预测了结果;中间:DMI阳性的眼睛,其中人类级别做出了错误的预测,而模型的预测是正确的;右:DMI阴性的眼睛和模型都正确地预测了结果。b。测试数据集中的DR分级和DMI存在。c。 GNN-MSVL模型(跳线n = 2)在不同的DR严重程度上进行的预测准确性。d。 GNN-MSVL模型(跳线n = 2)的示例DMI眼的CFP和OCTA图像做出了正确的预测。比例尺:0.5mm。
摘要:在流行病学中,风险因素是与疾病风险增加相关的变量。了解风险因素的作用对于制定改善全球健康的战略具有重要意义。有强有力的证据表明,吸烟、饮酒、既往白内障手术、年龄、高密度脂蛋白 (HDL) 胆固醇、BMI、女性和局部色素沉着等风险因素与年龄相关性黄斑变性 (AMD) 有独立相关性。目前,在文献中,逻辑回归、多变量逻辑回归等统计技术正被用于通过使用数值/分类数据来识别 AMD 风险因素。然而,到目前为止,人工智能 (AI) 技术尚未在文献中用于识别 AMD 的风险因素。另一方面,基于人工智能 (AI) 的工具可以预测一个人何时有患上癌症、痴呆、哮喘等慢性疾病的风险,从而提供个性化护理。基于人工智能的技术可以使用数值/分类和/或图像数据,从而产生多模态数据分析,这需要使用基于人工智能的工具进行眼科风险因素分析。本综述总结了用于识别各种风险因素的统计技术以及人工智能技术为 AMD 相关疾病预测提供的更高益处。需要进行更多研究来审查用于识别其他眼科疾病(如青光眼、糖尿病性黄斑水肿、早产儿视网膜病变、白内障和糖尿病视网膜病变)风险因素的不同技术。