ITIB233 494 QUAT Elizabeth 47 (1) 政府信息科技的应用 ITIB234 495 QUAT Elizabeth 47 (2) 信息科技基础设施及标准 ITIB235 511 QUAT Elizabeth 47 (3) 社区信息科技 ITIB236 1576 QUAT Elizabeth 47 (2) 信息科技基础设施及标准 ITIB237 3026 尚海龙 47 (2) 信息科技基础设施及标准 (3) 社区信息科技 ITIB238 3027 尚海龙 47 (1) 政府信息科技的应用 (2) 信息科技基础设施及标准 ITIB239 3029 尚海龙 47 (2) 信息科技基础设施及标准 ITIB240 670 邵家辉 47 (2) 信息科技基础设施及标准 ITIB241 671 邵家辉家辉 47 (2) 资讯科技基建及标准 ITIB242 3520 苏祥荣 47 (3) 资讯科技在社区中应用 ITIB243 1880 陈晓光 47 (2) 资讯科技基建及标准 ITIB244 1963 陈月亨 47 (3) 资讯科技在社区中应用 ITIB245 2051 陈月亨 47 (2) 资讯科技基建及标准 ITIB246 2052 陈月亨 47 (2) 资讯科技基建及标准 ITIB247 2535 邓飞 47 (2) 资讯科技基建及标准 ITIB248 2538 邓飞 47 (3) 资讯科技在社区中应用 ITIB249 2840 黄俊硕
蒂莫西·F·毕晓普 太空与导弹防御卓越中心主任 美国陆军太空与导弹防御司令部 蒂莫西·F·毕晓普先生于 2019 年 1 月被任命为高级执行官,担任美国陆军太空与导弹防御司令部太空与导弹防御卓越中心主任。他的职业生涯包括在各种政府采购职位上的专业领导经验,涉及主要模拟、训练和仪表系统的开发、测试、生产、部署、维护和生命周期支持。毕晓普先生负责太空和战略导弹防御理论和培训、概念开发、决策支持、陆军太空和高空与战略导弹防御能力经理以及陆军太空人员发展。他是负责陆军空间作战军官 (FA40) 的执行代理人。他之前担任的高级管理职位是模拟、训练和仪器项目执行办公室 (PEO STRI) 的副项目执行官,负责管理 268 个项目,执行 30 亿美元的年度预算,以及 19 个外国和全球 386 个站点的 335,000 多台训练设备。他毕业于阿拉巴马大学亨茨维尔分校,获得电气和计算机工程理学学士学位,并拥有宾夕法尼亚州卡莱尔美国陆军战争学院战略研究理学硕士学位。毕晓普先生获得的奖项和认可包括欧洲设施管理司令部颁发的优秀文职服务奖、陆军测试和评估司令部颁发的年度十大杰出人员奖以及国防部颁发的全球反恐战争奖章。
马倩 1,3,4,† , 高伟 2,5,† , 肖强 1,3,4 , 丁凌松 2,5 , 高天一 2,5 , 周亚军 2,5 , 高欣欣 1,3,4 , 陶岩 1,3,4 , 刘车 1,3,4 , 谷泽 1,3,4 , 孔翔红 6 , Qammer H. Abbasi 7 、李连林 4,8 、邱成伟 6* 、李元庆 2,5* 、崔铁军 1,3,4* 1 东南大学电磁空间研究所,南京 210096 2 华南理工大学自动化科学与工程学院,广州 510641 3 东南大学毫米波国家重点实验室,南京 210096中国第四智能超材料中心琶洲实验室,广州 510330,中国 5 琶洲实验室脑机接口研究中心,广州 510330,中国 6 新加坡国立大学电气与计算机工程系,新加坡 7 格拉斯哥大学詹姆斯瓦特工程学院,格拉斯哥,G12 8QQ,英国 8 北京大学电子学系,先进光通信系统与网络国家重点实验室,100871 北京,中国 † 马倩和高伟:这些作者对这项工作做出了同等贡献。*共同通讯作者:tjcui@seu.edu.cn;auyqli@scut.edu.cn;chengwei.qiu@nus.edu.sg。
局部视黄醇可显着改善皮肤状况,包括增强皮肤水合,使表皮酸化,增强皮肤屏障以及减少皱纹的数量和体积。此外,视黄醇还通过改变皮肤微生物组以及宿主和微生物代谢物的结构和功能来重塑皮肤微生态。通过宝石构造,我们确定了2种皮肤微生物,锯齿状色素sp。和Corynebacterium kefirresidentii能够将视黄醇氧化为视网膜。超过10个皮肤微生物可以利用UDP-葡萄糖作为碳源,可能加速抹布水解并增加葡萄糖酸消耗。皮肤细胞和微生物重复使用抹布水解产生的视黄酸和视黄醇,增强视黄醇代谢及其有效持续时间。皮肤微生物组和视黄醇之间的这种结合作用可提高皮肤状况和抗衰老功效。
路东来 1, 2 , 何健 1, 4 , 李伟忠 5 , 陈斯凯 1 , 刘健 1, 3 , 吴南健 1, 2, 3 , 于宁美 4 , 刘丽媛 1, 2, 3 , 陈勇 6 , 习晓 5 和 南琪 1, 3
基因组中包含的信息对于我们植物病理学家来说是一座金矿,使我们能够改进诊断方法并寻找与流行病学和植物-微生物相互作用有关的特征,以及它们背后的进化过程。2022 年是《自然》杂志上发表的前两个黄单胞菌全基因组序列(da Silva 等人,2002 年)的 20 周年。十年后,我加入了黄单胞菌社区,致力于宿主适应性研究,这篇出版物是我阅读的第一篇黄单胞菌论文之一。这项工作的一个核心方面是比较两种黄单胞菌致病变种,即柑橘致病菌黄单胞菌和油菜致病菌黄单胞菌,它们分别对柑橘和十字花科植物具有致病性。这种方法使作者能够识别菌株特异性基因并提出可能解释不同宿主特异性和致病过程的机制,这是我们社区中的两个热点问题(Harris 等人,2020 年;Jacques 等人,2016 年)。这种比较基因组学分析在许多方面都具有开创性,下一个黄单胞菌基因组花了三年多的时间才发表。几年后,随着越来越快、越来越便宜的测序技术的出现,全基因组测序“民主化”了(Zhao & Grant,2011 年),很快导致每年发布几十个,然后是几百个黄单胞菌基因组序列(图 1)。
新兴软件系统的高级设计方法:原则、方法和工具 / 刘晓东和李阳编辑。p. cm。包括参考书目和索引。摘要:“本书提供了该领域相关的理论框架和最新的实证研究成果,澄清了当前许多新兴软件系统设计和工程领域的最新技术和知识混乱和令人困惑的文献”——由出版商提供。ISBN 978-1-60960-735-7(精装本)——ISBN 978-1-60960-736-4(电子书)——ISBN 978-1-60960-737-1(印刷版和永久访问)1. 系统软件。2. 应用软件——开发。3. 计算机网络——设计和构建。I. 刘晓东,1966 年 10 月 8 日-II。李阳,1973-QA76.76.S95A38 2012 004.6--dc23 2011021481
具有连续体束缚态的硅槽形纳米立方体高效二次谐波产生 方慈哲,杨奇宇,袁清晨,顾林鹏,甘雪涛*,邵瑶,刘燕,*韩根泉,郝越 方聪,杨倩,刘英教授,韩刚教授,郝英教授 西安电子科技大学微电子学院宽禁带半导体技术国家重点实验室,西安 710071,中国 电子邮件:xdliuyan@xidian.edu.cn 袁倩,顾琳,甘雪教授 西北工业大学物理科学与技术学院,工业和信息化部光场操控与信息获取重点实验室,陕西省光信息技术重点实验室,西安 710129,中国 电子邮件:xuetaogan@nwpu.edu.cn Y.邵 国家电网上海能源互联网研究院,上海市浦东新区李冰路251号,201210,中国 刘宇 教授 智能芯片与器件研究中心 浙江省重点实验室,杭州,311121,中国 关键词:二次谐波产生,连续体中的束缚态,硅,介电纳米结构 具有中心对称性的光学材料,例如硅和锗,不幸的是
淡水龟种群的保护依赖于精准有效的监测技术。环境 DNA (eDNA) 分析是识别水生生态系统中隐蔽和难以捉摸的龟种的潜在方法。eDNA 分析有助于确定保护工作的重点区域并监测种群水平随时间的变化。本研究旨在评估一种快速 eDNA 检测方法对黄泥龟 (Kinosternon flavescens,一种在美国某些州濒临灭绝的指示种) 的有效性,该龟栖息于南德克萨斯州卡梅伦县的当地牛轭湖(例如 resacas)。一种针对物种的嵌套 PCR 检测旨在增强对黄泥龟种群的检测。我们从卡梅伦县的五个地点采集了水样以检测黄泥龟 eDNA。结果显示,在五个调查地点中有两个地点有黄泥龟存在。我们的研究表明,eDNA 监测对黄泥龟种群具有巨大潜力。该研究还提供了使用 eDNA 监测保护黄泥龟物种的见解,并为未来的研究和保护举措提供了建议。
