Azadirachta Indica A. Juss(Neem)是越南流行的植物,具有强大的降血糖作用。但是,有限的研究报告了药物剂型的印em提取物的制定。因此,这项工作确定了对糖尿病治疗的膜涂层片的发育和体内/体内评估,具有含水层叶提取物,具有湿度受保护的能力。为此,我们首先研究了INEM叶的最佳提取条件,以获得最强的降血糖作用的提取物。最好的条件是利用乙醇90%作为溶剂,植物固体溶剂比为1:10 w/w。然后,通过改变片剂吸附剂,稀释剂,粘合剂,分解剂和耐水膜涂层聚合物的类型/量来确定最佳的膜涂层片剂。与商业产品相比,最佳配方具有良好的水分耐药性以及可接受的易碎性和分解值。最后,分别利用α-葡萄糖苷酶抑制性测定和小鼠葡萄糖耐受性测试,通过体外和体内测试对产物的抗糖尿病性质进行了评估。片剂在抑制α-葡萄糖苷酶酶(43.33%的酶(相比之下为55.16%)和小鼠中的体内试验时,片剂显示出明显的降血糖作用(43.33%)。总而言之,包含A. A. juss叶提取物的薄膜涂层片剂在体外/体内环境中具有潜在的抗糖尿病作用。
总结,对天然植物色素(例如花青素和姜黄素)的健康益处的兴趣越来越大。在这篇综述中,我们介绍了这些色素如何通过刺激胰高血糖素样肽-1(GLP-1)分泌或诱导米色脂肪细胞形成来预防糖尿病和肥胖。的花青素,delphinidin 3-鲁丁苷(D3R)的显示出增加GLP-1的分泌。 富含D3R的富含D3R的黑加仑提取物(BCE)通过刺激GLP-1的分泌并随后诱导胰岛素分泌,从而在大鼠腹膜内葡萄糖注射后显着改善葡萄糖耐受性。 D3R在公元前至少45-60分钟内在胃肠道中没有显着分解。 食物来源因素引起的内源性GLP-1分泌增加可能有助于减少糖尿病药物的剂量并预防糖尿病。 姜黄素具有各种生物学功能,包括抗肥胖和抗糖尿病特性。 然而,迄今为止,大多数动物和人类试验中都对高剂量的姜黄素进行了给药,这主要是由于天然姜黄素在水中的溶解度差及其低口服生物利用度。 我们证明了高度分散和生物可用的姜黄素配方(HC),但不是天然姜黄素,诱导米色脂肪细胞的形成。 此外,较低剂量的HC和Artepillin C(巴西蜂窝状的特征成分)的共同给药可显着诱导小鼠米色脂肪细胞形成,但单独使用同一剂量的HC或Artepillin C给药。显示出增加GLP-1的分泌。富含D3R的富含D3R的黑加仑提取物(BCE)通过刺激GLP-1的分泌并随后诱导胰岛素分泌,从而在大鼠腹膜内葡萄糖注射后显着改善葡萄糖耐受性。D3R在公元前至少45-60分钟内在胃肠道中没有显着分解。食物来源因素引起的内源性GLP-1分泌增加可能有助于减少糖尿病药物的剂量并预防糖尿病。姜黄素具有各种生物学功能,包括抗肥胖和抗糖尿病特性。然而,迄今为止,大多数动物和人类试验中都对高剂量的姜黄素进行了给药,这主要是由于天然姜黄素在水中的溶解度差及其低口服生物利用度。我们证明了高度分散和生物可用的姜黄素配方(HC),但不是天然姜黄素,诱导米色脂肪细胞的形成。此外,较低剂量的HC和Artepillin C(巴西蜂窝状的特征成分)的共同给药可显着诱导小鼠米色脂肪细胞形成,但单独使用同一剂量的HC或Artepillin C给药。我们的研究表明,姜黄素制剂或姜黄素与其他食品衍生的因素的共同给药提供了单独天然姜黄素所无法的作用。关键词花青素,姜黄素,胰高血糖素样肽-1,米色脂肪细胞,不合理蛋白1
摘要:电子分叉是一种巧妙的生物能量转换机制,可有效耦合三种不同的生理相关底物。因此,执行此功能的酶通常在调节细胞氧化还原代谢中起关键作用。一种这样的酶是 NADH 依赖性还原铁氧还蛋白:NADP + 氧化还原酶 (NfnSL),它将 NAD + 的热力学有利还原耦合以驱动铁氧还蛋白从 NADPH 的不利还原。NfnSL 与其底物的相互作用被限制在严格的化学计量条件下,这可确保非生产性分子内电子转移反应的能量损失最小。然而,决定这一情况的因素尚不清楚。NfnSL 的一个奇怪特征是,分叉电子的两个初始受体都是独特的铁硫 (FeS) 簇,每个簇包含一个非半胱氨酸配体。尽管位点分化的 FeS 配体在许多氧化还原活性酶中都存在,但它们的生化影响和机制作用仍是谜。在此,我们描述了野生型 NfnSL 和变体的生化研究,其中位点分化的配体之一已被半胱氨酸取代。基于染料的稳态动力学实验、底物结合测量、生化活性测定和酶中电子分布评估的结果表明,NfnSL 中的这种位点分化配体在维持两种电子转移途径执行的协调反应的保真度方面发挥作用。鉴于这些辅助因子的共性,我们的发现具有广泛的意义,超越了电子分叉和机械生物化学,并可能为调节细胞氧化还原平衡的方法提供信息,以实现有针对性的代谢工程方法。
摘要背景与目的:姜黄素或二阿魏酰甲烷来源于阿魏酸。这种草药化合物具有特殊的化学结构和各种生物/医学特性。姜黄素及其类似物结构中的功能团参与特定生物活性的形成。这种天然化合物具有很高的生物活性,并有可能治疗癌症、阿尔茨海默氏症、糖尿病和严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 等疾病。考虑到近年来传染病和癌症的蔓延,以及耐药性和副作用的增加,提供有效且可用的治疗方法是必要的。方法:本综述解释了姜黄素的化学结构并涵盖了其生物学特性,包括抗炎、抗氧化、抗癌、神经保护、抗糖尿病和抗 SARS-CoV-2 活性。研究了科学数据库以收集所需信息。结果:姜黄素影响多种分子通路,包括激活转录因子、细胞生长因子、抗炎剂、蛋白激酶、细胞因子和凋亡通路因子。因此,它对健康具有有益的治疗作用。结论:通过靶向多种分子机制,姜黄素具有治疗各种疾病的潜力。了解姜黄素的药理/生物活性及其作用机制可以增强姜黄素作为潜在生物活性和治疗化合物的应用。关键词:姜黄素、生物活性、分子效应靶点、姜黄素类化合物
摘要:乳腺癌是女性最常见的癌症,人们一直致力于开发基于纳米药物的新型乳腺癌治疗方法。在本研究中,我们研究了计算机模拟姜黄素 (Cur) 的特性,发现了 Cur 的一些重要缺点。为了增强 Cur 的癌症治疗效果,使用三种不同的非离子表面活性剂(跨度 20、60 和 80)来制备各种载有 Cur 的囊泡 (Nio-Cur)。然后,用叶酸 (FA) 和聚乙二醇 (PEG) 修饰制备的 Nio-Cur 以抑制乳腺癌。对于 PEG-FA@Nio-Cur,Bax 和 p53 的基因表达水平高于游离药物和 Nio-Cur。使用 PEG-FA 装饰的 Nio-Cur,Bcl2 的水平低于游离药物和 Nio-Cur。当研究 PEG-FA@Nio-Cur 和 Nio-Cur 的 MCF7 和 4T1 细胞摄取测试时,结果表明 PEG-FA 修饰的囊泡表现出最明显的内吞作用。体外实验表明,PEG-FA@Nio-Cur 是一种很有前途的乳腺癌治疗中 Cur 递送策略。乳腺癌细胞吸收了制备的纳米制剂并表现出持续的药物释放特性。
摘要:研究pH敏感瓜尔胶接枝聚合物包覆5氟尿嘧啶的设计、细胞毒性及肿瘤靶向药物递送。以瓜尔胶、2-羟乙基甲基丙烯酸酯和核黄素靶向剂为原料,以N,N-亚甲基双丙烯酰胺为交联剂,四甲基乙二胺(TEMED)引发剂和过硫酸铵为催化剂,成功制备了载GG接枝p(HEMA)共轭核黄素薄膜(GG-gP(HEMA)-RF),该薄膜可负载5氟尿嘧啶并用于肿瘤靶向治疗。采用FT-IR和XRD光谱技术分析了GG-gP(HEMA)-RF的结构特征。SEM结果表明,该载体呈均匀的棒状,孔隙率低,对5氟尿嘧啶的包覆和缓释性能优异。靶向药物输送策略因其疗效更有效、副作用更少等优势而受到科学界的特别关注。用台盼蓝拒染试验研究了不同浓度(0、25、50、100 和 150 μg/mL)下 5FU 负载的 GG-gP(HEMA)-RF 对艾氏腹水癌 (EAC) 细胞的体外细胞毒性作用。MTT 细胞毒性试验研究了针对 EAC 实验模型的细胞活力,并表明载体具有良好的生物相容性。结果揭示了艾氏腹水癌细胞系中的抗增殖作用以及凋亡的分子信号传导和产生的活性氧 (ROS)。EAC 细胞中凋亡的形态变化明显,染色后用光学显微镜观察到。采用DPPH自由基清除实验测定了5FU负载和未负载的GG-gP(HEMA)-RF的自由基清除活性,并用电子显微镜和荧光光谱法研究了5FU负载的GG-gP(HEMA)-RF与DNA的相互作用。
人工智能 (AI) 方法在药物发现和递送系统的设计和优化中得到了广泛考虑。在此,机器学习方法用于优化载姜黄素 (CUR) 纳米纤维的生产。通过文献调查挖掘所需数据,并检测和研究两类(包括基于材料和机器的参数)作为最终结果的有效参数。AI 结果表明,高密度聚合物具有较低的 CUR 释放率;然而,随着聚合物密度的增加,许多类型聚合物中的 CUR 包封效率 (EE) 都会增加。当分子量在 100 至 150 kDa 之间、CUR 浓度为 10 – 15 wt% 时,可获得最小直径、最高 EE 和最高药物释放百分比,聚合物密度在 1.2 – 1.5 g mL 1 范围内。此外,最佳距离为 23 cm、流速为 3.5 – 4.5 mL h 1 、电压在 12.5 – 15 kV 范围内可获得最高的释放率、最高的 EE 和最低的纤维平均直径。这些发现为未来通过 AI 方法设计和生产具有理想特性和性能的载药聚合物纳米纤维开辟了新道路。
核黄素-5-磷酸 (RF) 是角膜交联 (CXL) 中最常用的光敏剂,但其亲水性和负电荷限制了其穿透角膜上皮进入基质。为了增强 RF 对角膜的通透性并提高其在圆锥角膜治疗中的疗效,以 ZIF-8 纳米材料为载体制备了新型芙蓉状 RF@ZIF-8 微球复合材料 [6RF@ZIF-8 NF (纳米片)],其特点是疏水性、正电位、生物相容性、高负载能力和大表面积。苏木精和伊红内皮染色和 TUNEL 分析均证明 6RF@ZIF-8 NF 具有良好的生物相容性。在体内研究中,6RF@ZIF-8 NF 表现出优异的角膜渗透性和出色的跨上皮 CXL (TE-CXL) 功效,略优于传统 CXL 方案。此外,6RF@ZIF-8 NF 的特殊芙蓉状结构意味着它比 6RF@ZIF-8 NP(纳米颗粒)具有更好的 TE-CXL 功效,因为与上皮的接触面积更大,RF 释放通道更短。这些结果表明 6RF@ZIF-8 NF 有望用于跨上皮角膜交联,避免上皮清创的需要。
受体酪氨酸激酶 (RTK) 是一种跨膜细胞表面蛋白,可充当信号转导器。它们调节细胞增殖、凋亡、分化和代谢等基本过程。RTK 变异发生在多种癌症中,这突显了其在癌症进展中的关键作用以及作为合适治疗靶点的作用。然而,由于耐药性的出现,小分子 RTK 抑制剂的使用受到了限制,这凸显了对多效抗癌剂的需求,这种抗癌剂可以替代现有药物或与现有药物联合使用,以增强治疗效果。姜黄素是一种有吸引力的治疗剂,主要是因为它具有强大的抗癌作用、广泛的靶点范围和最小的毒性。在姜黄素的众多已记录靶点中,RTK 似乎是姜黄素介导抑制的主要节点之一。许多研究发现,姜黄素影响 RTK 激活及其下游信号通路,导致癌细胞凋亡增加、增殖减少和迁移减少(体外和体内实验)。本文重点介绍姜黄素如何通过抑制 RTK 和下游信号通路(如 MAPK、PI3K/Akt、JAK/STAT 和 NF- κ B 通路)发挥抗癌作用。本文还分析了姜黄素和 RTK 抑制剂的联合研究,重点介绍了它们的共同分子靶点。
摘要 全身化疗仍是晚期鼻咽癌 (NPC) 的主要治疗方法,但由于耐药性和全身毒性,过去十年中治疗效果有限。姜黄素 (Cur) 是一种有效的化疗替代品,因为它在 NPC 治疗中表现出了显著的治疗潜力。然而,缺乏组织特异性和在实体瘤中渗透性差是有效治疗的主要障碍。因此,在本研究中,构建了一种自组装的亚30纳米治疗性脂质纳米粒子,负载 Cur,命名为 Cur@α-NTP-LN,特异性靶向清道夫受体B类成员1 (SR-B1) 并增强其对体内 NPC 的治疗效果。我们的结果表明,Cur@α-NTP-LNs 在 NPC 细胞特异性靶向性、抑制细胞增殖和诱导细胞凋亡方面有效且优于游离 Cur。体内和体外光学成像显示,Cur@α-NTP-LNs具有较高的靶向性,可在鼻咽癌异种移植瘤中特异性地聚集并全身给药后将Cur递送至肿瘤中心。此外,Cur@α-NTP-LNs对鼻咽癌皮下肿瘤的生长表现出明显的抑制作用,与Cur和α-NTP-LNs治疗组相比,抑制率分别超过71%和47%。此外,在鼻咽癌肺转移模型中,Cur@α-NTP-LNs几乎阻断了鼻咽癌的转移,并显著提高了生存率。因此,亚30纳米Cur@α-NTP-LNs提高了Cur的溶解度,并表现出将Cur靶向递送到鼻咽癌实体肿瘤中心的能力,对鼻咽癌肿瘤的生长及其转移发挥高效的协同抑制作用。关键词:鼻咽癌 靶向治疗 姜黄素 肽 脂质纳米粒子