加利福尼亚州桑尼维尔,2024 年 5 月 15 日,Luminus Devices 自豪地推出了一系列突破性的 4 合 1 RGBL(红-绿-蓝-黄绿色)LED,专为需要高输出混色和高显色指数 (CRI) 的舞台和建筑照明系统而设计。4 合 1 RGBL LED 各个发射器之间的间距最小,可提供无与伦比的混色能力,为照明设计师提供广泛的调色板来创造迷人的视觉效果。黄绿色(570 nm 主波长)通道取代了传统 4 合 1 LED 中使用的冷白色 LED,以扩大色彩空间并提高亮度。这些 LED 在最大电流下拥有一流的流明输出,同时保持超过 85 的高 CRI,确保在 3000K 至 8000K 的整个色温范围内提供明亮的照明。所有通道均可驱动高达 3A 和 100% DC,从而实现高流明输出且可靠性不打折扣。
BD Horizon Realblue™780(RB780)染料是BLD染料家族的一部分。这是一个串联荧光色体,在498 nm处具有最大激发(EX MAX),在781 nm处发射最大(EM MAX)。由BD创新驱动,RB780可以在光谱和常规的细胞仪上使用,并被蓝色激光器(488-nm)兴奋,而561 nm黄绿色激光器的激发极少。对于配备蓝色激光器(488 nm)的常规仪器,RB780可以用作PE-CY7的替代方案,我们建议使用以780 nm接近的光滤光片(例如,780/60-nm带通滤波器)。用于配备蓝色激光器(488 nm)的光谱仪器,可以与PE-CY7结合使用。RB780平均比PE-CY7亮,并且在黄绿色探测器中溢出最少。
通常在树木中发现的绿树蜗牛是一种濒临灭绝的软体动物,具有独特的黄绿色壳,有效地伪装在树叶中,这是一个有用的特征,因为它主要以藻类为食。有趣的是,有些蜗牛会顺时针旋转,而另一些蜗牛会逆时针线圈,这是新加坡其他蜗牛物种中未见的现象。它可以使用浅色或橙色的体色而长达5厘米。活着的蜗牛的贝壳显得绿色,而空壳通常是黄色的。沿着八打架木板路有四个休息站 - tempinis Hut,Medang Hut,Macaranga Hut和Petaling Hut-提供了宁静的点,可观察周围的生物多样性。接近八打灵木板的尽头,您会遇到温柔的溪流。流充当水生野生动植物的栖息地,并在大雨期间充当自然排水系统。
本研究报告了一种前所未有的现象,具有相似结构的水溶性聚合物混合物(注 10)通过两个连续的 LLPS 事件以同心模式分离,即液相中的第一个 LLPS 和固液界面处的第二个 LLPS(图 2,顶部)。这种有趣的分离是通过使用高浓度的高离子强度盐(例如硫酸铵)实现的。 硫酸铵因其对水溶性生物聚合物的有效和非破坏性的盐析而闻名。研究小组在研究分子量(MW)为5,000Da的染料封端PEG存在下蛋白质的盐析行为时发现了PEG的同心分离现象。一般来说,蛋白质很难盐析,因此本实验采用了高浓度的硫酸铵。将此溶液滴到玻璃板上,用共聚焦激光扫描显微镜(CLSM)观察时,发现了意想不到的现象:玻璃表面形成了无数发出黄绿色荧光的环。
您可能会注意到,黄绿色、红色、金色和粉红色以 RGB 颜色代码表示。GDS 层编号和名称可在 PDK 图层图文件中找到(参见图 1(a)),而颜色及其代码可在技术文件中获得(参见图 1(b))。通常有一个用户友好的图层窗口 (LSW) 可帮助在请求的 LayerColors.map 中转换两个文件。可以实现一个自动化工具来进行此类转换。但是,此过程每个 PDK 仅运行一次。不同 PDK 版本之间的 GDS 编号、层名称和颜色不会改变。此外,CAD 工具通常使用示例中提出的颜色代码。因此,仅在安装新的 PDK 时才需要此过程。GDS 编号是不同 PDK 文件之间变化最大的数据。商业 PDK 中的图层颜色通常相似,例如(XFAB Mixed-Signal Foundry Experts,2019 年)。
日期:2024 年 1 月 29 日 (1) 版本 3.0 产品:三菱化学先进材料下述库存形状: Ertacetal ® POM-C C/3WF 自然色 Ertalon ® 6 PLA PA6 食品级自然色 Ertalon ® 66 SA PA66 食品级自然色 Ketron ® 1000 PEEK 食品级自然色和黑色 PE 500 食品级自然色和彩色(蓝色、绿色、红色、红棕色、黄色) TIVAR ® 1000 防静电食品级 UHMW-PE TIVAR ® 1000 ASTL 食品级 UHMW-PE TIVAR ® 1000 EC 食品级 UHMW-PE TIVAR ® 1000 食品级 UHMW-PE 自然色和彩色(黑色、蓝色、绿色、红色和黄色) TIVAR ® Ceram P 食品级 UHMW-PE 黄绿色 TIVAR ® Cestidur 食品级 UHMW-PE TIVAR ® DS 食品级 UHMW-PE 黄色 TIVAR ® HPV 食品级 UHMW-PE 据我们所知,我们在此确认,欧洲议会和理事会 2019 年 6 月 20 日关于持久性有机污染物的条例 (EC) 2019/1021(经委员会条例 (EU) No 2023/1608 修订)所管制的持久性有机污染物,既不是在原材料生产过程中,也不是在制造上述坯料过程中故意引入的。
藻类品种包括海藻,池塘浮渣和海带都来自同一个家庭。这些生物的植物样特征如叶绿体,可以进行光合作用的LIK植物。有些藻类还鞭毛和中心藻,在饲料习惯方面,它们与动物更相似。藻类范围从微小的单细胞生物到大型多细胞类型,它们生活在各种环境中,包括盐水,淡水,湿土或潮湿的岩石。较大的藻类物种通常被称为简单的水生植物。硅藻是盐水环境中最丰富的浮游生物类型,人数超过金棕色藻类。没有细胞壁,硅藻具有称为浮雕的二氧化硅壳,其形状和结构取决于物种。金棕色藻类虽然不太常见,但被称为纳米膨胀,仅由50微米的细胞组成。消防藻类,也称为鞭毛藻,是单细胞的,当它们大量盛开时会引起红潮,在海洋中以红色的色调出现。某些吡咯烷物种是生物发光的,导致水在夜间发光。鞭毛藻是有毒的,会产生可破坏人和其他生物体肌肉功能的神经毒素。与鞭毛藻类似的Cryptomonads也可能会产生有害的藻华,将水变深褐色或红色。netrium desmid是在淡水和盐水环境中发现的单细胞绿藻类的顺序,在具有对称结构的长丝状菌落中生长。绿藻主要居住在淡水中,但也可以在海洋中找到。F.E.它们具有由纤维素制成的细胞壁,并含有叶绿体,使它们可以进行光合作用。多细胞种类的绿藻形成菌落,从四个细胞到几千个细胞。用于繁殖,一些物种与一个鞭毛一起游泳的非运动型植物孢子或Zoospores。绿藻类的类型包括海莴苣,马毛藻和死者的手指。红藻通常在热带海洋位置发现,生长在珊瑚礁等实心表面或附着在其他藻类上。它们的细胞壁由纤维素和各种碳水化合物组成。红藻通过产生由水流携带的单孢子直至发芽的单孢子。他们还经历了有性繁殖和几代人的交替。不同种类的红藻形成不同的海藻类型,例如以其优雅的外观而闻名的plumaria elegans。海带是在水下海带森林中发现的一种棕色藻类。棕色藻类是最大的藻类类型之一,由在海洋环境中发现的各种海藻和海带组成。它们具有分化的组织,包括锚固器官,浮力的空气口袋,茎,光合器官以及产生孢子和配子的生殖组织。棕色藻类的生命周期涉及世代的交替。一些棕色藻类的例子包括萨尔加苏姆杂草,岩藻和巨型海带,它们的长度最高可达100米。黄绿色藻类是藻类的最少种类的类型,只有几百种,它们是单细胞生物,具有由纤维素和二氧化硅制成的细胞壁。藻类是具有类似于植物的特征的生物。它们最常见于水生环境中,藻类有七种主要类型,每个藻类具有不同的特征。绿藻通常生活在淡水中,而红绿色藻类则生活在新鲜和盐水环境中。本文解释了藻类的不同类型,包括它们的独特特征和栖息地。它还讨论了藻类作为包含植物样特征并具有光合作用的生物的重要性。藻类的大小差异很大,范围从单细胞到大型多细胞物种,并且可以在不同的水生环境以及潮湿的表面上找到。与较高的植物不同,它们没有根,茎,叶或花朵,并且缺乏血管组织。藻类作为主要生产者在水生生态系统中起着至关重要的作用,它是盐水虾和磷虾等各种海洋生物的食物来源。他们通过性和无性恋方法繁殖,一些物种经历了世代的交替。繁殖方法通常取决于温度,盐度和营养供应性等环境因素。Fritsch分类藻类基于色素沉着,thallus结构,储备食品,鞭毛和繁殖方式。藻类的两种主要类型是叶绿素(绿藻)和Phaeophyceae(棕色藻类)。叶绿素科包括约7,000种,主要在具有海洋形式的淡水环境中发现。他们通过性,无性和营养方法繁殖。它们表现出各种结构,例如单细胞,殖民地,丝状和管状形式。绿藻由于含有不同颜料的叶绿体而能够进行光合作用。它们的颜色范围从黄绿色到深绿色,它们具有线粒体,带有平坦的Cristae,中央液泡和由纤维素和果胶制成的细胞壁。Phaeophyceae由大约2,000种生活在海洋环境中。它们的特征是由于高水平的岩甘氨酸而引起的棕色着色,这是诸如Chl-A,C,Carotenes和Xanthophylls之类的光合色素的另一种存在。他们的植物体被分为固定的锚固,长期存在的stipe,lamina或frond可能是一年。海带或海藻在这一组中是显着的较大形式,其中一些物种达到了相当大的尺寸,例如大环(30-60m),使其成为最大的海洋植物。这些藻类包含由纤维素和藻类等多糖制成的细胞壁,纤维素和藻类酸是一种复杂的多糖,有助于保护它们免受各种环境因素的侵害。棕色藻类包含锚定器官,茎,光合器官以及发展孢子和配子的生殖组织。,他们以拉米那肽和甘露醇的形式保留食物,如在拉米那尼亚,大环,内囊等物种等物种中所见。红色藻类具有植物蛋白酶和植物素色素,使它们的颜色显得红色,尤其是在更深的水域中。这些生物可以由于这些色素而吸收蓝绿色的光谱,从而使它们在更大的深度繁殖。一个例子是液泡。大多数红藻是光自人营养的,但有一些例外,例如Harveyella,它生活在其他红藻类上。它们的细胞壁由纤维素,果胶和硫酸化植物胶体(如琼脂)组成。红藻中的thallus组织可以从单细胞到类似蕾丝的结构不等。这些生物可以保留食物为佛罗里达淀粉,在Gonyostomum和Chattonella等物种中发现。黄绿色藻类是最少的多产量,只有450-650种。它们主要是单细胞的,具有纤维素 - 硅细胞壁,用于运动的鞭毛以及缺乏某些色素的叶绿体。Xanthophyceae通常形成细胞的小菌落,并具有用于运动的鞭毛。他们将食物保留为脂肪,主要是在具有盐水适应的淡水环境中发现的。他们的性繁殖很少见。菊科是单细胞或殖民地鞭毛物,包括各种类型的球形,衣壳,丝状,丝状,变形虫,质子和实质形式。大约12,000种菊科,主要是居住在淡水环境中,其中一些在盐水栖息地中发现。这些微生物的特征在于诸如叶绿素A,P-胡萝卜素和叶黄素等色素。黄金藻类以脂肪的形式存储能量,很少经历有性繁殖,并产生称为囊肿的专门静息细胞。运动形式具有一两个不同类型的鞭毛:金属丝或鞭打。chrysocapsa,lagynion,ochromonas,chrysamoeba是金藻的例子。例子包括气旋,thalassiosira,Navicula和Nitzschia。接下来,芽孢杆菌科(硅藻)由约12,000至15,000种。这些微生物在显微镜下显示为鼓形细胞,并带有一些形成的链。硅藻以脂肪的形式存储能量,并经历广泛的有性繁殖。它们具有由果胶和二氧化硅组成的硅化细胞壁,存在于淡水,海洋和陆地环境中。隐藻科是单细胞鞭毛形式,约有200种。在光学显微镜下,它们以红色或红色颜色的逗号形细胞出现。Cryptophyceae以淀粉的形式存储能量,具有由纤维素组成的细胞壁,并具有两个不等的鞭毛。罕见的异恋性繁殖发生在这些生物体中,居住在淡水和海洋环境中。例子包括plagioselmis,falcomonas,rhinomonas,teleaulax和chilomonas。Dinophyceae是大约200种的运动单细胞生物。他们的主要色素包括叶绿素a和c,β-胡萝卜素和叶丁香。罕见的异恋性繁殖发生在这些生物中,这些生物主要居住在海洋环境中,但有些存在于淡水中。Dinophyceae以淀粉或脂肪的形式存储能量。例子包括Alexandrium,Dinophysis,Gymnodinium,Peridinium,Polykrikos,Noctiluca,Ceratium和Gonyaulax。叶绿素科是具有鲜绿色色谱和过量叶丁香的单细胞生物。他们以脂肪的形式存储能量,并具有双足动动物形式。这些微生物仅居住在淡水环境中。euglenineae是具有光合色素的运动单细胞或殖民地生物,例如叶绿素a和b,β-胡萝卜素和木蛋黄酱。他们以淀粉或脂肪的形式存储能量,并具有类似于微观动物的裸纤毛生殖器官。有性繁殖尚未得到这些生物的明确证明。尤格伦氨酸中不存在细胞壁,其中一种或多种金属丝类型。一个例子是Euglena。最后,蓝藻科或粘菌科(蓝绿色藻类)由单细胞,殖民地或多细胞体组成,具有原核核和双膜性线粒体和叶绿体。这些微生物居住在各种环境中,并具有多种特征。颜料在蓝藻科的独特蓝色中起着至关重要的作用,植物蛋白蛋白是主要的贡献者。这组藻类缺乏运动阶段,而以氰基雄雄或粘菌糖淀粉的形式存储食物。它们的细胞壁由果胶或纤维素组成。在许多蓝绿色藻类物种中常见的独特特征,例如“假”分支和杂环。在蓝菌科中没有有性繁殖,无处不在,到处都可以找到。这些生物的例子包括Nostoc,振荡器,Anabaena,Lyngbya和Plectonema。藻类是主要生产者,利用叶绿素A和B进行光合作用,并且具有确定其颜色的各种色素。藻类通常被错误地考虑到植物或生物。然而,某些物种可以产生有毒的花朵,例如红潮,蓝绿色藻类和蓝细菌,对人类健康,水生生态系统和经济构成重大威胁。藻类有多种类型的藻类,包括绿藻(绿藻),Phaeophyceae(棕色藻类),rohodophyceae(红藻类),Xanthophyceae(黄绿色藻类)和氰基藻科和粘液菌科或粘粒细菌(蓝绿色藻类)。这些生物可以大致分为三个大藻类:棕色藻类,绿藻和红藻。
摘要 Polygonum cognatum Meissn. 是一种野生可食用植物,在土耳其被称为 madimak。其嫩芽在春季栽培并用作蔬菜。本研究评估了不同干燥处理对 madimak 植物颜色属性的影响,这些植物使用两种不同的方法干燥:热风干燥和微波干燥。风干处理分别在 60、70 和 80 °C 下进行。微波干燥使用四种不同的微波功率水平进行,范围在 160 至 750 W 之间。madimak 的微波干燥比热风干燥更快。随着微波功率的提高,干燥时间大大减少。干燥过程在 0.058 到 0.308 小时之间完成,具体取决于微波功率水平,而热风干燥在 2.583 到 4.166 小时之间。微波干燥对样品颜色质量的影响不如热风干燥大。微波干燥植物的叶绿素 a、叶绿素 b 和总叶绿素含量显著保留。颜色和叶绿素属性均表明,与热风或常温干燥相比,微波干燥更适合马迪马克植物。研究发现,在 750 W 微波功率下,颜色变化最小,叶绿素含量最高。此外,80 °C 热风干燥和 160 W 微波功率水平的最低比能量需求分别为 44.58 kWh/kg 和 107.00 kWh/kg。结果表明,热风干燥温度之间的比能量需求没有显著差异,而微波功率水平之间的差异很大。关键词:Madimak、微波、热风、颜色、比能、可食用植物、叶绿素引言叶绿素是分布最广的植物色素,叶绿素 a 和 b 在食品技术中的重要性源于它们在绿色蔬菜中的作用(King 等人,2001)。叶绿素 a 和叶绿素 b 是主要形式,通常存在于常用于食用的高等植物中,它们的比例大约为 3:1。叶绿素 a 和 b 都是四吡咯酞菁氧合物的含镁衍生物。叶绿素 a 和叶绿素 b 在感知颜色和热稳定性方面也不同。叶绿素 a 呈蓝绿色,叶绿素 b 呈黄绿色(Cui 等人,2004)。它们极易在加工和储存过程中降解。叶绿素转化为脱镁叶绿素和其他衍生物会导致从鲜绿色变为暗橄榄绿色或橄榄黄色,最终被消费者视为品质的下降 King 等人(2001 年)和 Ahmed 等人(2001 年)。叶绿素保留对于确定热脱水绿色植物的最终质量非常重要。在较高温度和酸性条件下,叶绿素环中的中心镁被两个氢离子取代,绿色叶绿素转化为橄榄棕色脱镁叶绿素。在约 60–80 o C 的较低温度下,叶绿素酶活性增加,形成绿色叶绿素,然后叶绿素易受镁损失的影响,从而形成橄榄褐色脱镁叶绿素 (Cui 等,2004)。颜色是植物产品的重要质量属性,叶绿素已被用作绿色蔬菜的质量指标 (Guan 等,2005)。Polygonum cognatum Meissn. 是一种野生植物,在土耳其语中称为“madimak”。这种可食用植物是一种多年生细长木本植物。它生长在海拔 720-3000 米的路边、斜坡和悬崖上。春季收集带叶的嫩芽 (Yildirim 等,2003)。植物的新鲜叶子和茎可作为蔬菜食用。干燥的植物可用作药用植物 (Ozbucak 等,2007)。在土耳其民间医学中,它被用于各种目的,例如其利尿作用和治疗糖尿病(Yildirim 等人,2003 年)。脱水是最古老的食品保存方法之一,是食品加工中非常重要的一个方面。产品在干燥过程中产生的热损伤与温度成正比