印度尼西亚作为主要的煤炭生产商和出口商,在2023年生产了7.752亿吨煤炭,采矿活动集中在卡利曼坦和苏马特拉。印度尼西亚还拥有376亿吨的煤炭储量,在全球排名第六。然而,数十年的煤炭提取导致了严重的环境降解,特别是通过形成酸矿物排水(AMD)。AMD是一种高度酸性的污染物,其特征是pH值低,溶解金属浓度升高,在矿石中暴露于黄铁矿(FES₂)和其他硫化物矿物质时形成,在采矿过程中暴露出来,在与氧气和水接触时会氧化。这个过程大大威胁了水质,土壤健康和整体生态系统完整性。为了减轻AMD的环境影响,有效的开垦技术至关重要。这些包括使用过度蓄积植物的改良剂的应用,AMD管理系统的实施以及植物修复。这些方法旨在中和酸度,降低金属浓度并恢复煤炭后土地中的生态系统功能。该研究应用了描述性分析方法来评估印度尼西亚和全球实施的开垦策略。这些发现为有效和可持续的开垦实践提供了建议,以减轻AMD,恢复退化的土地并确保长期的环境可持续性。合成沸石在重金属吸附中显示出更高的有效性,而天然沸石则更具成本效益和可持续性。在管理AMD时,应将主动技术和被动技术组合的应用调整为站点的特定特征。植物修复已被证明有效地减少土壤和水中的重金属污染。
a. 项目描述:2017 年,美国陆军工程兵团 (USACE) 阿拉斯加地区 (POA) 监管部门收到申请人 Pebble Limited Partnership (PLP) 的申请,希望获得陆军部 (DA) 的授权,在伊利亚姆纳湖支流的源头开发铜、金和钼矿,最终到达布里斯托尔湾,距离安克雷奇西南约 200 英里。最近的社区将是伊利亚姆纳、纽哈伦和诺达尔顿村,每个村距离矿床约 17 英里。拟议项目由四个主要部分组成:矿场、钻石角港、交通走廊和拟穿越库克湾的天然气管道。作为牵头联邦机构,USACE 确定需要进行环境影响报告 (EIS) 级别的分析。POA 与合作机构和公众进行了广泛的多年 EIS 流程。在申请审查过程和随附环境影响报告的制定过程中,PLP 修改了其申请,使其与拟议的避免和最小化措施保持一致。在 2020 年 6 月最终修订的矿山计划中,PLP 提议将 Pebble 矿床开发为露天矿,20 年内将开采 13 亿吨矿石。2020 年矿山计划由四个主要要素组成:(1) 位于南叉 Koktuli 河 (SFK)、北叉 Koktuli 河 (NFK) 和上塔拉里克河 (UTC) 流域的矿场;(2) Diamond Point 港口;(3) 运输走廊,包括精矿和回水管道;(4) 天然气管道和光缆。第一个要素是全面开发的矿场,计划包括一个露天矿坑、散装尾矿储存设施 (TSF)、黄铁矿 TSF、一座 270 兆瓦的发电厂、水管理池 (WMP)、水处理厂 (WTP)、研磨和加工设施以及支持基础设施。根据 2020 年矿山计划,PLP 将进行四个不同的矿山阶段:建设、运营(也称为生产)、关闭和关闭后。建设期将持续大约四年,随后
本文介绍了对硫化物矿石的铜生物侵蚀的早期发展的简要回顾,并讨论了其从巴基斯坦从土著硫化物矿石沉积中提取铜的预期。铜的形式存在于辣椒(Cufes 2),辣椒(Cu 2 s),Covellite(Cus),Bornite(Cu 3 Fes 3),Enargite(Cu 3 Fes 3),Cu 3 Ass 4)和Tennantite(Cu 3 Ass 3),是最重要的重要铜(Cu 3 Ass 3),这是最重要的铜在硫化铜和甲型型号(柱状型)中,孢子型(Strate-Strate-contrancient and Strate-coundert)(硫化物沉积。黄铁矿(FES 2)和其他金属(Ni,Co,Mo,Zn等)硫化物矿物质也存在于硫化矿石沉积物中。在浸出溶液中硫酸盐(FES 2)(FES 2)的细菌氧化和Cu-硫化物矿物质(S)中,在浸出溶液中在浸出溶液中产生硫酸(H 2 SO 4),硫酸铁(Fe 2(So 4)3)和硫酸盐Cuso 4的硫酸和硫酸盐CUSO 4和氧硫化物矿物质(S)由酸性fe-氧化和氧化氧化剂进行了改良,从而产生。硫酸(H 2 SO 4)充当利克西(浸出剂)和硫酸铁(Fe 2(So 4)3)作为墨西哥铜矿的生物素质过程中的氧化剂(CUFES 2)。由于低pH值促进矿物质的质子攻击,并减轻了浸出溶液中金属的沉淀,因此生物无能的反应在pH 1.5-3.0处是最佳的。可溶性铜通过从酸性铜浸出液中的溶剂提取(SX)回收,在下游加工过程中进行了剥离/洗脱,然后进行电工(EW),以生产生物含量的铜铜(99.9%CU)产品。铜是从硫矿石和采矿废物中提取的,并使用堆和倾倒生物渗入过程在商业规模上提取。通过将残留物变成价值,这是一个独特的机会,可以在商业规模上引入创新的环境友好型铜提取技术,从而被认为是高度盈利的。可以将生物渗入过程用于提取Cu和相关的有价值的金属,从土著低级,截止等级,泡沫尾矿和硫化物矿床的采矿废物
宾汉姆峡谷矿周围被 60 多亿吨(54 亿吨)废石所包围,这些废石是 1903 年至今露天采矿过程中产生的,废石面积约为 2,000 公顷。废石堆从顶部到底部厚度超过 300 米。1930 年至 2000 年,废石堆的选定部分使用基于硫酸铁的浸出剂主动浸出以提取铜,而其他部分仅接受流星浸出。从 2011 年至今,力拓肯尼科特公司研究了宾汉姆峡谷矿废石堆水质的演变及其地球化学控制因素。在此项目中,通过现场测井和 13 个成对的钻孔仪器对废石堆进行了详细描述;在 13 个地点中的 12 个,钻孔穿透了垃圾场的整个深度,穿过了采矿前的土壤接触面,进入了基岩。钻孔深度接近地表以下 275 米,使用旋转声波钻孔方法,以便 (1) 回收岩心和 (2) 测量近现场特性。钻孔的现场记录包括统一土壤分类系统描述、碎屑岩性、相对氧化、糊状物 pH 值和地球物理方法(陀螺仪、温度、中子和伽马)。对钻孔岩心的岩土特性(密度、粒度分布、含水量、塑性指数和极限、直接和块体剪切)进行了分析,通过扫描电子显微镜 (QEMSCAN) 对矿物进行了定量评估,改进了酸碱核算 (ABA),改进了合成沉淀浸出程序 (SPLP),通过 Corescan 进行了高光谱分析,并采集了水样(如果遇到)。钻孔内安装的仪器包括渗水仪、热敏电阻节点、直接温度传感 (DTS) 光纤电缆、时域反射 (TDR) 剪切电缆、气体(氧气、二氧化碳)测量管和振线压力计 (VWP)。此外,每个钻孔点都对当地废石表层的氧气消耗进行了多次测量。从钻孔中获取的数据与广泛钻探、矿物学和岩石地球化学评估、水力和示踪剂测试以及 20 年的渗流和水质数据的历史信息(超过 50 年)相关联,以开发一个描述废石堆的水力、地球化学和物理行为的概念模型。废石堆中的黄铁矿和其他硫化矿物因空气的扩散和对流进入而氧化,产生酸性、高总溶解固体的废水,以及在废石中形成的黄钾铁矾,作为储存额外酸性的次生相。主要的空气进入机制是对流,占废石堆中硫化物氧化的 90% 以上。根据废石堆的温度分布和水平衡,地球化学反应造成的水分损失占水预算的很大一部分。1.0 简介力拓肯尼科特宾汉峡谷矿场现有的废石堆占地约 2,000 公顷,包含超过 60 亿吨(5.4 亿吨)的材料。从 1930 年左右开始,人们一直在对废石堆进行浸出以回收铜,直到 2000 年停止浸出。
