摘要 — 自动检测和去除脑电图 (EEG) 异常值对于设计强大的脑机接口 (BCI) 至关重要。在本文中,我们提出了一种新的异常值检测方法,该方法适用于样本协方差矩阵 (SCM) 的黎曼流形。现有的异常值检测方法存在错误地将某些样本拒绝为异常值的风险,即使没有异常值,因为检测基于参考矩阵和阈值。为了解决这一限制,我们的方法黎曼谱聚类 (RiSC) 基于提出的相似性度量将 SCM 聚类为非异常值和异常值,从而检测异常值。这考虑了空间的黎曼几何,并放大了非异常值簇内的相似性并削弱了非异常值和异常值簇之间的相似性,而不是设置阈值。为了评估 RiSC 的性能,我们生成了受不同强度和数量的异常值污染的人工 EEG 数据集。比较 RiSC 与现有异常值检测方法之间的 Hit-False (HF) 差异,证实 RiSC 可以显著更好地检测异常值 (p < 0.001)。特别是,对于异常值污染最严重的数据集,RiSC 对 HF 差异的改善最大。
摘要 — 众所周知,考虑用户特定设置可以增强脑机接口 (BCI) 的性能。特别是,振荡活动分类的最佳频带高度依赖于用户,过去二十年已经开发了许多频带选择方法。然而,这些传统方法是否可以有效地应用于黎曼 BCI 尚未得到很好的研究,黎曼 BCI 是一类新兴的 BCI 系统,与传统 BCI 管道不同,它利用了数据的非欧几里得性质。在本文中,我们提出了一种基于黎曼流形的新型频带选择方法。选择频带时,考虑到基于流形上的类间距离和类内方差量化的类独特性。该方法的一个优点是可以针对每个人调整频带,而无需进行密集的优化步骤。在使用基于运动想象的 BCI 公共数据集的比较实验中,我们的方法比固定宽频带和流行的传统频带选择方法的平均准确率有显著提高。尤其是,我们的方法显著提高了最初准确度较低的受试者的表现。这一初步结果表明,开发考虑流形属性的新用户特定设置算法的重要性,而不是直接应用在黎曼 BCI 兴起之前开发的方法。
摘要 — 目的:近年来,黎曼几何在脑机接口 (BCI) 中的应用势头强劲。为黎曼 BCI 提出的大多数机器学习技术都认为流形上的数据分布是单峰的。然而,由于高数据变异性是脑电图 (EEG) 的一个关键限制,因此分布可能是多峰的而不是单峰的。在本文中,我们提出了一种新颖的数据建模方法,用于考虑 EEG 协方差矩阵的黎曼流形上的复杂数据分布,旨在提高 BCI 的可靠性。方法:我们的方法黎曼谱聚类 (RiSC) 使用基于测地距离的相似性测量的图来表示流形上的 EEG 协方差矩阵分布,然后通过谱聚类对图节点进行聚类。这允许灵活地在流形上对单峰和多峰分布进行建模。可以以 RiSC 为基础设计异常值检测器(即异常值检测黎曼谱聚类 (oden-RiSC))和多模态分类器(即多模态分类器黎曼谱聚类 (mcRiSC))。odenRiSC/mcRiSC 的所有必需参数均以数据驱动的方式选择。此外,无需预设异常值检测阈值和多模态分类模式数。结果:实验评估表明,odenRiSC 可以比现有方法更准确地检测 EEG 异常值,并且 mcRiSC 的表现优于标准单模态分类器,尤其是在高变异性数据集上。结论:odenRiSC/mcRiSC 有望使实验室外的真实 BCI 和神经人体工程学应用更加稳健。意义:RiSC 可以用作稳健的 EEG 异常值检测器和多模态分类器。
在这项工作中,我们考虑了发布驻留在黎曼流形上的差分隐私统计摘要的问题。我们提出了拉普拉斯或 K 范数机制的扩展,该机制利用了流形上的固有距离和体积。我们还详细考虑了摘要是驻留在流形上的数据的 Fréchet 平均值的特定情况。我们证明了我们的机制是速率最优的,并且仅取决于流形的维度,而不取决于任何环境空间的维度,同时还展示了忽略流形结构如何降低净化摘要的效用。我们用两个在统计学中特别有趣的例子来说明我们的框架:对称正定矩阵的空间,用于协方差矩阵,以及球面,可用作离散分布建模的空间。