:吸收惰性吸收材料。对于大溢出物,提供堤防或其他适当的包含,以防止材料扩散。如果可以泵送堤坝,则将回收的材料存储在适当的容器中。使用合适的吸收剂清理溢出中的剩余材料。本地法规可能适用于本材料的释放和处理,以及清理版本中所涉及的材料和物品。您将需要确定哪些法规适用。本SD的第13和15节提供了有关某些地方或国家要求的信息。
今天,总理罗杰·库克(Hon Roger Cook MLA)宣布,作为西澳计划中的制造计划的一部分,如果再次当选西澳工党,政府将向钒产品申请2.5%的特许权使用费,并保留对钒电解质的特许权使用费。这是从最近的选举承诺使用本地采购的钒在卡尔戈里安装50兆瓦,10小时的钒电池的承诺。“ AMEC自2021年以来就一直在为这种重要的特许权使用权变化而竞选,当时很明显,新的钒产品(例如五氧化钒)没有被州的特许权使用费框架正确捕获,”采矿和勘探公司协会首席执行官沃伦·皮尔斯(Warren Pearce)说。“决定也没有保留对钒电解质的特许权使用费的决定,这为公司投资下降和开发电解质(钒电池的关键成分)提供了强大的动力。” “西澳大利亚州有机会向我们的钒增值,制作钒电解质,并在西澳大利亚州建造钒电池,在西澳大利亚和澳大利亚使用,这是一个机会,无法错过。” “今天的公告确保西澳大利亚州将拥有经济和监管框架,以实现这一目标。” “承诺的家用电池计划还将有助于创造对钒电池的国内需求。”在该州的战略工业区还承诺,又有5亿美元的投资,西澳州的劳动力正在为西澳大利亚州这一新的高价值行业的发展提供支持。“这项承诺将有助于吸引对钒项目的投资,以及制造钒电池和钒电池所需的增值这些承诺,再加上英联邦的关键矿产生产税激励措施(AMEC也游说),创造了强大的动力,以在西澳大利亚州提供当地的钒电池行业。AMEC在过去四年中一直与政府和钒成员紧密合作,以寻找支持这个新兴市场的方法。我们很高兴看到西澳工党认识到该行业的潜力以及它将为西澳大利亚带来的好处。结束 - 有关更多信息或采访沃伦·皮尔斯
作为古老的水手,在我杀死了信天翁后,我被直接恐惧淹没了,尽管并不完全意识到我的罪过的严重性。起初,我的同伴赞扬了这一行为,但很快,我无意识的事迹开始展开。曾经狂热的风死了,我们被困在众多一动不动的海中。那时,我感觉到了自己的罪过,好像无辜的鸟的灵魂挂在我的脖子上,将我标记为造成我们痛苦的原因。信天翁的死亡象征着我与自然和神圣秩序的脱节。我的惩罚不仅是外部的,而且是通过无生命的海洋和我的船员的沉默指控,而且内部的惩罚 - 对我的灵魂感到痛苦。我违反了神圣的纽带,现在大自然和天堂反对我。口渴,我的船员的死眼,孤立的眼睛 - 这些是我的折磨,也是理解我的违法行为的途径。我意识到我的罪不仅反对那只鸟,而且反对生命本身。只有通过深刻的痛苦和目睹所有生物的美,包括我曾经鄙视的黏糊糊的海蛇,我才能寻求救赎。在不知不觉中祝福他们时,我开始了缓慢而痛苦的赎罪之旅,得知真正的悔改不仅需要后悔,而且需要对一生的深刻敬意。这个罪恶,惩罚和最终救赎的循环告诉我,无论多么小,每一个生活都与神的神圣和交织在一起。我的诅咒被解除了,但是我永远讲述了我的故事,这是一个活着的提醒,救赎是艰难的,我们必须与周围的世界和谐相处。
全体会议论文 # 2001 黏连蛋白功能改变对核心结合因子急性髓系白血病增殖的影响 Shannon Conneely、Jason Rogers、Matthew Miller、Jason Guo、Rohit Gupta、Geraldo Medrano、Debananda Pati、Rachel Rau 贝勒医学院/德克萨斯儿童医院,美国德克萨斯州休斯顿 背景:核心结合因子急性髓系白血病 (AML) 是一种常见的儿童 AML,其特征是 inv(16) 或 t(8;21) 病变,这些病变会抑制核心结合因子复合物的功能。尽管这些重排被认为是 AML 的有利风险,但近 30% 的核心结合因子 AML 儿童会复发,这表明需要继续加深对 AML 生物学的了解和寻找新的治疗靶点。黏连蛋白复合体基因突变常见于 t(8;21) AML,但在 inv(16) AML 中从未发现,这表明黏连蛋白在每种核心结合因子 AML 亚型的病理生理学中发挥着独特的作用。目标:本项目的目标是确定黏连蛋白突变如何改变核心结合因子 AML 的生物学特性。我们假设,黏连蛋白正常功能的丧失会增强表达 t(8;21) AML 特征性 RUNX1-CBFA2T1 (RC) 融合蛋白的细胞增殖,并抑制表达 inv(16) AML 特征性 CBFß-SMMHC (CS) 融合的细胞的增殖能力。设计/方法:从黏连蛋白正常 (Smc3 +/+) 或黏连蛋白单倍体不足 (Smc3 +/-) 的小鼠体内采集骨髓细胞。我们利用逆转录病毒转导来表达空载体对照、RC 融合或 CS 融合蛋白。然后将转导的细胞接种在含有干细胞和骨髓促进细胞因子的甲基纤维素中,进行连续接种试验,或移植到致死性辐射受体小鼠体内,以评估对白血病转化的影响。结果:连续接种试验表明,黏连蛋白单倍体不足会增加表达 RC 蛋白的细胞的集落形成能力,并降低表达 CS 蛋白的细胞的集落形成能力。黏连蛋白单倍体不足会改变几种关键造血调节基因的表达,尽管这些影响取决于存在哪种融合蛋白。在小鼠 RC 模型中,无论黏连蛋白功能如何,都会发展为未分化白血病。然而,二次移植模型显示,黏连蛋白功能下降会导致白血病存活时间缩短,骨髓浸润增加。结论:正常黏连蛋白功能的丧失对表达核心结合因子 AML 融合蛋白的细胞增殖有不同的影响。在表达与 t(8;21) AML 相关的 RC 融合的细胞中,黏连蛋白功能的降低在白血病转化之前提供了生长优势,并带来了更具浸润性和侵袭性的白血病表型。或者,黏连蛋白功能下降导致表达 inv(16) AML CS 融合的细胞生长不利,造血基因表达发生显著变化。未来的实验将重点阐明核心结合因子 AML 中黏连蛋白功能下降所改变的潜在细胞机制。
* 通讯作者。leonid@mit.edu,zechner@mpi-cbg.de,ashansen@mit.edu。作者贡献:ASH 构思并启动了该项目。HBB、MG、SGH、LM、CZ、ASH 设计了该项目。ASH 进行了基因组编辑并生成了细胞系。GMD 克隆了质粒。MG、AJ、CC 和 ASH 表征并验证了细胞系。THSH 进行了 Micro-C。CC 进行了 ChIP-Seq。MG、AJ 和 HBB 使用来自 ASH 的输入优化了成像实验。MG 和 AJ 收集了图像数据。MG 和 AJ 进行了对照实验并表征了 AID 细胞系。HBB 开发了图像处理管道 CNN,并使用来自 ASH、SGH、MG 和 AJ 的输入分析了图像数据。HBB 使用来自 SGH 和 LM 的输入进行了聚合物模拟。MG、AJ、HBB 和 ASH 注释了轨迹数据。 SGH 和 CZ 在 HBB、LM 和 ASH 的帮助下设计了 BILD。SGH 开发并测试了 BILD,将 BILD 应用于轨迹数据,并在 HBB、LM、ASH 和 CZ 的帮助下开发了 MSD 分析。HBB 和 SGH 分析了聚合物模拟。ASH、LM 和 CZ 负责监督该项目。HBB、MG、SGH、AJ 和 ASH 起草了手稿和图表。所有作者都编辑了手稿和图表。+ 现地址:Illumina Inc.;美国加利福尼亚州圣地亚哥 92122 † 这些作者对这项工作的贡献相同,可以先列出自己的名字。
摘要:抗菌耐药性(AMR)是对公共卫生的全球威胁,预测每年对1万亿美元的负面影响,因此紧急需要新颖的治疗剂。通过这些微生物形成生物膜的能力进一步增强了许多细菌对当前药物的抗性,其中细胞被包裹在黏糊糊的细胞外基质中并粘附在表面或形成细胞聚集体中。生物膜形成了物理化学障碍,可抵抗诸如小分子抗菌物等处理的渗透,使大多数治疗无效。铜绿假单胞菌是直接关注的优先病原体,它通过基因调节途径的多层控制生物膜形成,包括群体传感(QS),这是一个细胞间信号传导系统。我们最近报道了该生物体中PQSR QS调节剂的一系列抑制剂,可以增强抗生素的作用。但是,这些QS抑制剂(QSI)与浮游生物培养物相反,由于通过生物膜矩阵穿透不良,对生物膜显示了适度的影响。为了增强抑制剂的递送,将小的聚合物库设计为特定QSI的载体,其侧链有变化,以引入带正电荷或中性的部分,以帮助渗透到铜绿假单胞菌生物膜中。在一系列测定中评估了合成的聚合物,以确立其对铜绿假单胞菌中PQS QS系统抑制的影响,从聚合物中释放的抑制剂水平及其对生物膜形成的影响。发现选择的阳离子聚合物 - QSI结合物可以通过生物膜层有效穿透并释放QSI。与环丙沙星结合使用时,与在相同条件下的游离QSI和环丙沙星相比,它增强了该抗生素的生物膜抗菌活性。
摘要 建立了非均匀应力场下隧洞开挖力学模型,提出了一种同时考虑黏聚力和内摩擦角弱化的应变软化模型,推导了峰后区半径、应力与位移的解析解。以桃园煤矿某隧洞为工程实例,确定了隧洞峰后区半径、地表位移和应力分布情况,讨论了平竖应力比、中间主应力、残余黏聚力、残余内摩擦角对隧洞变形的影响。研究结果表明:由于应力场不均匀,隧洞周边峰后区半径和应力分布随方向呈变化趋势;考虑中间主应力时,隧洞峰后区半径和地表位移较大;残余黏聚力和内摩擦角越大,隧洞峰后区半径和地表位移越小。
黏连蛋白亚基 STAG2 已成为人类癌症中反复失活的肿瘤抑制因子。最近的研究使用候选方法揭示了 STAG2 与其同源物 STAG1 之间的合成致死相互作用。为了系统地探究 STAG2 缺失下的遗传脆弱性,我们在同源细胞系中进行了全基因组 CRISPR 筛选,并确定 STAG1 是 STAG2 缺陷细胞中最突出和最具选择性的依赖性。使用可诱导的降解系统,我们表明 STAG1 蛋白的化学遗传降解会导致 STAG2 缺陷细胞中姐妹染色单体黏连性丧失和细胞快速死亡,而 STAG2 野生型细胞则不会受到影响。生化分析和 X 射线晶体学确定了与黏连蛋白复合物的 RAD21 亚基相互作用的 STAG1 区域。消除这种相互作用的 STAG1 突变会选择性地损害 STAG2 缺陷细胞的生存能力。我们的工作强调了 STAG1 的降解和抑制其与 RAD21 的相互作用是一种有前途的治疗策略。这些发现为开发 STAG1 导向的小分子以利用 STAG2 突变肿瘤中的合成致死性奠定了基础。