化学机械平坦化 (CMP) 工艺已广泛用于平坦化硅基半导体器件中的各种材料,包括电介质、金属和半导体。它是实现纳米级晶圆和芯片级平坦度的最关键步骤之一。然而,在 CMP 工艺之后,晶圆表面上会观察到各种污染物,并且由于它们对器件性能和可靠性具有最直接的影响,因此它们成为许多代快速减小的特征尺寸中最关键的良率降低因素。本书章节提供了 (1) CMP 耗材引起的污染物,例如残留颗粒、表面残留物、有机残留物、焊盘碎片和金属杂质、焊盘污染、水印等,(2) CMP 后清洁过程中刷子引起的交叉污染,(3) 去除这些污染物的 CMP 后清洁。对各种类型的 CMP 污染物的形成及其特性的基本了解将极大地有利于下一代 CMP 浆料和 CMP 后清洁解决方案的开发。
制动系统是高速车辆的基本安全部件,在极端条件下的性能至关重要。本文比较了两种先进的制动系统:采用碳纳米管 (CNT) 增强复合材料的盘式制动器和采用铝-石墨烯纳米复合材料的电磁制动器。该研究利用 ANSYS 仿真软件和实验测试来评估这两个系统的热稳定性、耐磨性、应力、应变、变形和机械强度。我们的研究结果表明,与传统的碳陶瓷材料相比,CNT 增强复合材料在高制动温度下表现出优异的热稳定性和抗变形性。在电磁制动系统中,与 Al 6061 相比,铝-石墨烯纳米复合材料表现出显着改善的机械性能和减少的磨损。该分析表明,这些先进材料可显着改善制动性能,为提高高速车辆制动系统的安全性和效率提供了有希望的途径。
3. 课程“PCB 设计、组装和包装”(EQF 3 至 6)课程“PCB 设计、组装和包装”涵盖生产一块印刷电路板 (PCB) 所需的整个过程和步骤。该课程以项目为基础,即每个学生必须根据 EQF 级别设计、生产和测量一块不同难度的 PCB。不同 EQF 级别的内容包括相应 EQF 级别的不同模块。它们如下图所示。这些模块包括:原理图设计、组件选择、印刷电路板设计、模拟、在适当情况下对生产的 PCB 进行最终封装以及对最终产品进行测试。课程中教授三种不同的软件产品:Kicad、Altium 和 Proteus。课程包括 PCB 的主要组装和安装技术。课程介绍了通孔焊盘和 SMD 焊盘之间的主要区别及其优缺点。课程中,将研究单层和多层 PCB 设计的不同制造工艺步骤,其中通孔用于层间连接和最佳热传递。
上述外壳尺寸为典型尺寸。具体尺寸取决于订单数量。 9. ! 注意 9-1.浪涌电流 施加到产品上的浪涌电流(脉冲电流或冲击电流)超过规定的额定电流可能会导致严重故障,例如开路、因温度过高而烧毁。如果施加浪涌电流,请提前联系我们。 9-2. 应用限制 在将我们的产品用于下列需要特别高可靠性的用途之前,请与我们联系,以防止可能直接对第三方的生命、身体或财产造成损害的缺陷。 (1)飞机设备 (2)航空航天设备 (3)海底设备 (4)发电厂控制设备 (5)医疗设备 (6)防灾/防盗设备 (7)交通信号设备 (8)运输设备(汽车、火车、轮船等) (9)数据处理设备 (10)与上述用途具有相似复杂性和/或可靠性要求的用途 10. 注意事项 本产品设计为焊接安装。如需使用导电粘合剂等其他安装方法,请提前咨询我们。 10-1. 焊盘图案设计 标准焊盘尺寸(流动和回流焊接) 焊接 a b c
摘要目的:评估1,400代谢产物与结直肠癌和胃癌之间的因果关系。研究设计:孟德尔随机化研究。研究的地点和持续时间:中国Yantai University的Yanai Yuhuangding医院,于2024年7月至2024年8月。方法论:分别从加拿大的衰老纵向研究(CLSA)以及昂贵的Finngen项目中得出了全代代谢物基因组关联研究(GWAS)数据和遗传数据。根据其与全基因组显着性水平的代谢产物的关联选择合适的仪器变量,从而确保了绘制的因果下降中的高度可靠性。使用逆差异加权(IVW)进行初始分析。敏感性分析,以验证发现并评估潜在的多效性或偏见。结果:代谢物包括8,299名个体的研究。胃癌包括1,307例病例和287,137例对照;大肠癌包括6,509例和287,137例对照。研究确定了与不同程度的风险增强或缓解措施相关的69个代谢产物。胃癌是一个更集中的发现突出了两个具有显着因果关系的代谢产物,与风险增加以及保护性影响相关。灵敏度分析确定了这些发现的有效性。结论:通过阐明对结直肠癌和胃癌风险的直接因果关系的特定代谢产物,这项研究标志着理解涉及癌症发展的代谢途径的显着进步。
我们将介绍一种新的芯片优先 FOWLP 替代方案,该替代方案可满足大量需要 FOWLP 等封装技术的应用的需求。这种新封装已在 ASE 投入生产一年多,并使用“芯片最后”方法来解决增加可用互连焊盘面积的问题。已用铜柱 (Cu) 凸块凸起的芯片被批量回流到低成本无芯基板上,然后进行包覆成型,该包覆成型也用作芯片底部填充。Cu 柱允许以 50 µm 或更小的间距直接连接到芯片焊盘,从而无需在芯片上形成 RDL。使用嵌入式迹线允许细线和间距低至 15µm 或更小,并直接键合到裸铜上。Cu 柱键合到铜迹线的一侧,焊球或 LGA 焊盘直接位于铜的另一侧。这使得基板实际上只与走线中使用的铜一样厚,并使最终封装的厚度达到 400µm。由于这使用现有的大批量封装基础设施,因此可以轻松实现更复杂的组装,包括多个芯片、包含无源元件和 3D 结构。我们将此封装结构指定为“扇出芯片后封装 (FOCLP)”对于高端应用,我们将展示使用高密度基板工艺用于要求更高的芯片后扇出封装的能力关键词芯片先、芯片后、扇出、晶圆级封装
