摘要 - 基于卷积神经网络(CNN)的深度学习方法显示,基于成像数据,基于成像数据的痴呆症的早期和准确诊断的早期和准确诊断都很大。但是,这些方法尚未在临床实践中被广泛采用,这可能是由于深度学习模型的解释性有限。可解释的提升机(EBM)是玻璃框模型,但无法直接从输入成像数据中学习功能。在这项研究中,我们提出了一个可解释的新型模型,该模型结合了CNN和EBM,以诊断和预测AD。我们制定了一种创新的培训策略,该策略将CNN组件作为功能提取器和EBM组件作为输出块而交替训练CNN组件,以形成端到端模型。该模型将成像数据作为输入,并提供预测和可解释的特征重要性度量。我们验证了有关阿尔茨海默氏病神经影像学计划(ADNI)数据集的拟议模型,以及Health-Ri Parelsnoer神经疾病生成疾病生物库(PND)作为外部测试集。所提出的模型以AD和对照分类为0.956的面积为0.956,预测轻度认知障碍(MCI)在ADNI队列上进行AD的预测为0.694。所提出的模型是与其他最先进的黑盒模型相当的玻璃盒模型。我们的代码可在以下网址提供:https://anonymon.4open.science/r/gl-icnn。索引术语 - Alzheimer氏病,MRI,深度学习,转换神经网络,可解释的提升机器,明显的人工智能
摘要 近年来,我们看到了基于热激活延迟荧光 (TADF) 的 OLED 在合成和传感与成像应用方面的巨大增长。然而,器件级应用仍然局限于外部量子效率 (EQE) 的不可预测性。虽然涉及 TADF 系统中内部量子效率 (IQE) 和逆系统间窜越 (rISC) 机制途径的理论研究已经得到了相当严格的探索,但对 EQE 的研究仍然缺乏。随着数据驱动分析成为科学的第四种范式(前三种是经验、理论和计算),我们对从文献中获取的 123 个样本的 30 个特征采用了 ML 模型来预测 EQE 最大值。一方面,所使用的模型捕获了器件选择性,但在发色团的发射范围内普遍存在。我们已经证明,梯度提升 (GB) 是一种集成学习模型,能够预测 EQE 最大值,训练/测试集的 r 2 得分为 0.71 ± 0.04/0.84,RMSE 低至 4.22 ± 0.55/2.53。考虑到目前最先进的技术 (SOTA),这是可以预测任何发射范围的 TADF 发色团并描述设备架构影响的最佳模型。我们还进行了特征重要性分析,使这个所谓的黑盒模型可解释。这种分析有助于找出提高 EQE 效率的基本参数。即使学习曲线仍在上升,也证明如果将来提供更多的训练示例,该模型可以改善其预测。所有计算都可以使用易于访问的云计算完成。关键词:机器学习、TADF、OLED、EQE、集成学习
为了找到一个可解释的解决方案,需要一个简单而有效的模型来在许多会话中共享行为相关的神经变化。同样,动物的行为不仅受当前任务的影响,也受动物以前试验的经验的影响。例如,[10]发现小鼠的决策表现出在数十到数百次试验中持续存在的内部状态,这可以通过隐马尔可夫模型(HMM)有效地建模。这些潜在状态可以在不同动物和实验会话中重现。许多神经科学实验表现出由这种可重现的潜在状态引起的试验间行为相关性。除了对会话间神经相似性进行建模之外,明确考虑连续试验中的这些行为相关性还可以潜在地提高神经解码性能。在这项工作中,我们开发了两种互补的方法来利用这些神经和行为相关性来改进神经解码。对于神经数据,我们采用多会话降秩模型,该模型在跨会话时具有相似的神经活动时间模式,同时保留会话特定的差异以适应个体差异。对于行为数据,我们使用多会话状态空间模型从多个会话中动物行为的试验间相关性中学习潜在行为状态。然后使用这些学习到的神经和行为表征来改进单次试验、单会话解码器。与现有的通过复杂黑盒模型在会话间共享数据的深度学习方法不同,我们的模型简单、可解释性强且易于拟合。我们使用来自国际脑实验室 [ 11 , 12 ] 的小鼠神经像素记录来评估我们的神经和行为数据共享模型,其中包括 433 个会话和 270 个大脑区域。结果显示,在不同行为任务中解码准确率有所提高。我们的方法在计算上是高效的,使我们能够创建与行为相关的时间尺度的全脑图,并识别与每个行为任务相关的关键神经元。
摘要:这项工作提出了Seizft - 一种新型的癫痫发作检测框架,该框架利用机器学习使用可穿戴的Sensordot EEG数据自动检测癫痫发作。受到可预处的睡眠阶段的启发,我们的新方法采用了数据增强,有意义的特征提取和决策树的独特组合,以提高对脑电图变化的弹性,并提高概括以概括为看不见数据的能力。傅立叶变换(FT)替代物被用来增加样本量并改善标记的非塞兹和癫痫发作时期之间的平衡。为了增强模型稳定性和准确性,Seizft通过Catboost Classifier利用决策树的集合来将EEG记录的每一秒分类为癫痫发作或非癫痫发作。SEIZIT1数据集用于培训,SEIZIT2数据集用于验证和测试。使用两个主要指标:使用AINY-ROVERLAP方法(OVLP)和错误的警报(FA)速率(使用基于Epoch的评分(Epoch))评估了用于癫痫发作检测的模型性能。值得注意的是,Seizft在2023年2023年国际声学,言语和信号处理国际会议上(ICASSP)的癫痫发作检测挑战(ICASSP)的一系列最先进的癫痫发作检测算法(ICASSP)。seizft在准确的癫痫发作检测中优于最先进的黑盒模型,并最小化错误警报,总分获得了40.15的总分,在两个任务中结合了OVLP和时期,并且比下一个最佳方法的改善约为30%。Seizft的解释性是一个关键优势,因为它促进了医疗保健专业人员的信任和问责制。从Seizft提取的最预测性的癫痫发作检测特征是:三角波,四分位数范围,标准偏差,总绝对功率,Theta波,三角洲与Theta的比率,BINNED熵,Hjorth Complextity,Delta + Theta + Theta和Higuchi Fractal Fractal Ristermension。总而言之,将Seizft成功应用于可穿戴的Sensordot数据表明,它可能进行实时,连续监测的潜力,以改善个性化医学癫痫。
随着人工智能 (AI) 的不断进步和金融科技的热情高涨,信用评分等应用引起了学术界的广泛兴趣。信用评分是一种帮助金融专家更好地决定是否接受贷款申请的方法,这样违约概率高的贷款就不会被接受。表现良好的信用评分模型能够区分更有可能违约的贷款申请和不太可能违约的贷款申请,这是非常有益的,因为它们减少了贷款审批流程所需的时间,并可以节省大量成本。除了此类信用评分模型面临的嘈杂和高度不平衡的数据挑战之外,最近出台的法规,例如《通用数据保护条例》(GDPR) 和《平等信贷机会法》(ECOA) 引入的“解释权”,也增加了对模型可解释性的需求,以确保算法决策是可以理解和连贯的。因此,这要求黑盒机器学习 (ML) 模型(如 ANN 和 XGBoost)不仅在分类性能上准确,还必须能够解释它们的预测,以便金融专家愿意信任和采用这样的模型。最近提出的一个有趣概念是可解释的人工智能 (XAI),其重点是使黑盒模型更具可解释性和可说明性。多年来,已经提出了多种旨在通过规则或视觉说明来解释 ML 算法预测的 XAI 方法,其中一些是本质上可解释的模型,而另一些是事后可解释性技术。在这项工作中,我们旨在提出一种既准确又可解释的信用评分模型,并且总体上比 Dash 等人 (2018) 提出的最先进的基准通过列生成布尔规则 (BRCG) 方法更好;Dash 等人是 FICO 最新的可解释机器学习挑战赛的获胜者。本工作中进行的实验表明,最先进的 XGBoost 模型比逻辑回归 (LR)、决策树 (DT)、随机森林 (RF) 和人工神经网络 (ANN) 技术以及基准 BRCG 模型表现更好,在 HELOC 数据集上的 ROC 曲线下面积 (AUROC) 为 0.78,在 Lending Club 数据集上的 AUROC 为 0.71。XGBoost 模型通过三种 XAI 技术得到进一步增强;SHAP+GIRP 提供全局解释,Anchors 提供基于局部特征的解释,ProtoDash 提供基于局部实例的解释。这三种类型的解释为可解释性提供了全面的解决方案,因为不同的人在不同情况下需要不同的解释。通过使用功能基础(即通过形式化措施评估)、应用基础(即由人类专家评估)和人为基础(即通过对文献的分析(通常由普通人评估)表明,所提供的解释简单、一致、完整,并且满足了正确性、有效性、易理解性、细节充分性和可信度等六项预定假设。
论文 ID 标题/作者 指定会议 6 时空对比网络用于冠状动脉 CT 血管造影中冠状动脉疾病的数据高效学习 马兴华,邹明业,方欣燕,刘洋,罗恭宁,王伟,王宽泉,邱兆文,高鑫,李硕 海报 5 14 TP-DRSeg:通过显式文本提示辅助 SAM 改善糖尿病视网膜病变病变分割 李文学,熊新宇,夏鹏,鞠烈,葛宗元 海报 4 26 用于外科三联体识别的尾部增强表征学习 桂双春,王振坤 海报 1 40 MH-pFLGB:通过全局旁路模型进行医学图像分析的异构个性化联邦学习 谢璐媛,林曼青,徐晨明,栾天宇,曾志鹏,文俊Chen, Cong Li, Yuejian Fang, Qingni Shen,zhonghai Wu 海报 2 50 FM-ABS:即时基础模型驱动 3D 医学图像分割的主动无监督学习 Zhe Xu, Cheng Chen, Donghuan Lu, Jinghan Sun, Dong Wei, Yefeng Cheng, Quanzheng Li, Raymond Kai-yu Tong 海报 1 53 心脏副驾驶:使用世界模型自动引导超声心动图蒋浩军、孙振国、贾宁、李萌、孙宇、罗沙琪、宋世吉、黄高海报 2 65 拥抱海量医疗数据 周宇成、周宗伟、Alan Yuille 海报 1 67 掩蔽缺失:不完整多模态脑肿瘤分割的任意跨模态特征重建 曾志林、彭泽林、杨小康、沉伟海报 4 73 迈向直肠内超声视频中结直肠癌分割的基准:数据集和模型开发 Yun Cheng Jiang、Yiwen Hu、Zixun 张、Jun Wei、Chun-Mei Feng、Xuemei Tang、Xiang Wan、Yong Liu、Shuguang Cui、Zhen Li 海报 5 74 UinTSeg:统一婴儿脑组织分割与解剖描绘 Jiameng Liu、Feihong Liu、Kaicong Sun、Yuhang Sun、 Jiawei Huang, Caiwen Jiang, Islem Rekik, Dinggang Shen 海报 2 77 XCoOp:通过概念引导上下文优化实现计算机辅助诊断的可解释即时学习 Yequan Bie, Luyang Luo,zhixuan Chen,hao Chen 海报 5 78 DiffExplainer:通过反事实生成揭开黑盒模型 Yingying Fang, Shuang Wu, Zihao Jin, Shiyi Wang, Caiwen Xu, Simon沃尔什·光阳海报 5
系统生物学的第一门课程是为高级本科生和研究生设计的,以探索系统生物学领域。本书着重于计算模型及其对各种生物系统的应用。它介绍了代表系统生物学和合成生物学领域的前沿的建模,分子清单和案例研究的基础。这为执行标准系统生物学任务,了解现代文献并启动专门课程或项目提供了全面的背景和访问方法。系统生物学:综合介绍第三版本书是系统生物学的介绍,一个越来越多的领域,侧重于应用于各种生物医学现象的计算模型的设计和分析。首先要涵盖建模的基本原理,然后对将生物系统栩栩如生的分子清单进行回顾。这本书结束了案例研究,展示了系统生物学和合成生物学领域的前沿。文本探讨了医学和药物开发中生理建模,心脏功能和系统生物学等主题。它还深入研究了新兴领域,例如基于代理的和多尺度建模,生物设计原理,代谢通量分布,合成生物学,个性化医学和虚拟临床试验。在整本书中,读者将对系统生物学有一个全面的了解,包括访问执行标准任务,接触现代文学的方法以及启动专业项目的基础。本第三版已对文本进行了彻底的更新,为读者提供了该领域的最新知识和见解。新版本具有默认模块,限制周期,混乱,参数估计,基因调节模型表示,Michaelis-Menten Rate Law,不同类型的抑制作用,滞后,系统适应,非线性无效,PBPK模型和基本模式的主题。该格式将教学文本与对主要文献的参考结合在一起,并伴随着实践练习,以供经验和开放式问题进行反思。第1章讨论了生物系统,还原主义和系统生物学,强调了该领域交流的重要性。第2章研究数学建模,涵盖目标,输入,初始探索,模型选择,设计,结构,方程,参数估计,分析,诊断,一致性,鲁棒性,鲁棒性,探索,验证,验证,使用,应用,扩展,扩展,改进和大规模评估。Chapter 3 focuses on static network models, including strategies of analysis, interaction graphs, properties of graphs, small-world networks, dependencies among network components, causality analysis, mutual information, Bayesian reconstruction, application to signaling networks, static metabolic networks, stoichiometric networks, variants of stoichiometric analysis, metabolic network reconstruction, and metabolic control analysis.第5章通过涉及单个变量或几个变量的线性回归探索线性系统的参数估计。本章以测量基因表达及其定位的检查结束。Chapter 4 discusses the mathematics of biological systems, covering discrete linear systems models, recursive deterministic models, recursive stochastic models, discrete nonlinear systems, continuous linear systems, linear differential equations, linearized models, continuous nonlinear systems, ad hoc models, canonical models, more complicated dynamical systems descriptions, standard analyses of biological systems models, steady-state analysis, stability analysis, parameter灵敏度,系统动力学分析,限制周期和混乱的吸引子。它还涵盖了全面的网格搜索,非线性回归,遗传算法,其他随机算法,典型的挑战以及微分方程系统的结构识别。第6章讨论了基因系统,涵盖了DNA和RNA的主要教条,关键特性,化学和物理特征,大小,形状,基础,基础组成,复制,转录,翻译,调节,控制机制,基因的调控,蛋白质功能的调控,蛋白质功能,信号通路,基因网络,网络组成,组成,网络,组成,组成,组合和分析网络和分析。本书探讨了各种生物系统,包括DNA,基因和非编码DNA,以及真核DNA的填料和调节。RNA的一章深入到Messenger RNA(mRNA),转移RNA(tRNA),核糖体RNA(rRNA)和小RNA,然后讨论RNA病毒和基因调节。基因表达详细介绍,主题包括LAC操纵子,调节模式,转录因子和基因调节模型。以下各章关注蛋白质系统,讨论蛋白质的化学和物理特征,实验蛋白质结构的确定和可视化,酶,转运蛋白以及信号传导以及允许蛋白质。蛋白质,以及目前在蛋白质研究,蛋白质组学,结构功能预测,定位以及蛋白质活性和动态方面面临的挑战。代谢系统涵盖在第8章中,其中包括生化反应,基本反应的数学公式,速率定律,途径和途径系统。本章还讨论了生物化学和代谢组学,计算途径分析的资源,控制途径系统的控制,代谢组数据生成方法,采样,提取,分离,检测,检测,通量分析以及实验数据的动态模型。第9章探讨了信号系统,包括使用布尔网络和网络推理的信号转导网络的静态模型。信号转导系统以微分方程为模型,涵盖了诸如双重性和磁滞,两组分组信号系统,有丝分裂原激活的蛋白激酶级联反应,适应性和其他信号系统等主题。第10章深入人口系统,讨论了人口增长的传统模型,更复杂的增长现象,外部扰动下的种群动态,亚种群的分析,相互作用的人群,相位平面分析以及更复杂的人口动态模型。最后一章是酵母中基因组,蛋白质和代谢产物数据综合分析的案例研究。它回顾了模型的起源,讨论了酵母中的热应激反应,分析海藻糖周期,设计和诊断代谢途径模型,解释了葡萄糖动态,检查基因表达并介绍了多尺度分析和Multiscalar模型设计。第12章提供了使用心脏作为例证的生理建模的示例。它涵盖了量表和建模方法的层次结构,心脏解剖结构的基础知识,在各个级别(器官,组织,细胞)上建模目标,振荡的简单模型,振荡的黑盒模型以及从黑盒中的过渡到有意义的模型,包括电化学。本章讨论了系统生物学的各个方面,包括: *对心肌细胞电化学过程的生物物理描述 *静止的潜力和动作潜力以及这些过程的模型 *问题 *问题 *与重复心跳和失败的心脏相关的过程,并重点介绍了基于Biocartiol of Meciatoliviodial of Medial of Systrimic of Meciatolion of Medial of Systrologial Systems,涵盖了分子的范围:疾病以及个性化医学和预测性健康 *系统生物学在药物开发中的作用,从计算靶标和铅鉴定到使用动态模型的药代动力学建模和途径筛查,本章还深入研究了生物系统的设计原理,包括网络图案,操作原理,以目标为导向的操纵。它还通过代谢工程,基因回路和系统生物学在药物开发中的新作用来探讨合成生物学。最后,本章介绍了系统生物学中的新兴主题,例如: *对复杂疾病,炎症,创伤,生物的建模需求及其与环境的相互作用 *数据建模的研究管道对生物学理论或几种理论。