• 经营独资回收设施 • 合资企业 (JV) 和专有回收技术的许可 • 供应链和服务合同: ‒ 通过长期合同获得专有化学混合物 ‒ 贸易、采购和供应电池原料、黑质和电池材料
帕金森病 (PD) 是第二大常见的神经退行性疾病和最常见的运动障碍,其主要病理特征是黑质(中脑的一部分)中的多巴胺能神经元主要变性。尽管经过数十年的研究,但该疾病起源的分子机制仍然未知。虽然该疾病最初被视为纯粹的神经元疾病,但单细胞转录组学的结果表明少突胶质细胞可能在帕金森病的早期阶段发挥重要作用。虽然这些发现具有很高的相关性,特别是对于寻找有效的疾病改良疗法,但少突胶质细胞在帕金森病中的实际功能作用仍具有很高的推测性,需要协同的科学努力才能更好地理解。这一未解之谜讨论了人们对 PD 中少突胶质细胞的有限理解,强调了有关少突胶质细胞的功能变化、髓鞘在黑质多巴胺能神经元中的作用、毒性环境的影响以及少突胶质细胞内 α-突触核蛋白的聚集等未解决的问题。
中脑腹侧被盖区 (VTA) 的多巴胺能 (DAergic) 神经元受奖励刺激的刺激,并编码奖励预测误差以更新目标导向学习。然而,最近的数据表明,VTA DAergic 神经元在功能上是异质性的,在厌恶信号、显着性和新颖性方面发挥着新的作用,部分基于解剖位置和投射,突出了在动机行为中对 VTA DAergic 传出神经元库进行功能表征的必要性。先前的研究确定了一个由 VTA DAergic 神经元组成的中脑脚间回路,该回路投射到脚间核 (IPN),一个与厌恶、焦虑样行为和熟悉感有关的中脑区域,但最近受到了质疑。为了验证该回路的存在,我们在多巴胺转运体-Cre 小鼠系中结合了突触前靶向和逆行病毒示踪。与以前的报告一致,突触示踪显示来自 VTA 的轴突终末支配尾部 IPN;而逆行示踪显示 DAergic VTA 神经元(主要位于旁黑质区域)投射到伏隔核壳以及 IPN。为了测试 IPN 中是否存在功能性 DAergic 神经传递,我们在 C57BL/6J 小鼠的 IPN 中表达了遗传编码的 DA 传感器 dLight 1.2,并使用光纤光度法在社交和焦虑样行为期间体内测量了 IPN DA 信号。我们观察到在对新但不熟悉的同类进行社交调查期间以及在探索高架十字迷宫的焦虑开放臂期间 IPN DA 信号增加。总之,这些数据证实了 VTA DAergic 神经元向 IPN 的投射,并暗示该回路参与了动机探索的编码。
阿尔茨海默病 (AD) 是一种具有挑战性的神经退行性疾病,需要早期诊断和干预。这项研究利用机器学习 (ML) 和图论指标,这些指标源自静息态功能磁共振成像 (rs-fMRI) 数据来预测 AD。使用西南大学成人寿命数据集 (SALD,年龄 21-76 岁) 和开放获取系列成像研究 (OASIS,年龄 64-95 岁) 数据集(包含 112 名参与者),开发了各种 ML 模型用于 AD 预测。该研究确定了全面了解 AD 中的大脑网络拓扑和功能连接的关键特征。通过 5 倍交叉验证,所有模型都表现出显著的预测能力(准确率在 82-92% 范围内),其中支持向量机模型脱颖而出,准确率达到 92%,表现最佳。本研究表明,根据最重要的判别特征确定的前 13 个区域已经失去了与丘脑的显着联系。与健康成年人和老年人相比,AD 患者的黑质、网状部、黑质、致密部和伏隔核的功能连接强度持续下降。本研究结果与早期采用各种神经成像技术的研究结果相吻合。这项研究表明,将 ML、图论和 rs-fMRI 分析相结合的综合方法在 AD 预测中具有转化潜力,为更准确的诊断和早期预测 AD 提供了潜在的生物标记。
小脑和基底神经节都因其在运动控制和动机行为中的作用而闻名。这两个系统传统上被认为是独立的结构,通过单独的皮质-丘脑环路协调它们对行为的贡献。然而,最近的证据表明这两个区域之间存在丰富的直接连接。尽管有强有力的证据表明两个方向都有连接,但为了简洁起见,我们将讨论限制在从小脑到基底神经节的更明确的连接上。我们回顾了两组这样的连接:通过丘脑的双突触投射和到中脑多巴胺能核、VTA 和 SNc 的直接单突触投射。在每种情况下,我们都从解剖追踪和生理记录中回顾了这些通路的证据,并讨论了它们的潜在功能作用。我们提出证据表明,丘脑的突触外通路参与运动协调,其功能障碍会导致运动障碍,如肌张力障碍。然后,我们讨论小脑向腹侧被盖区和黑质内核的投射如何影响这些核的各自目标:腹侧被盖区和背侧纹状体中的多巴胺释放。我们认为,小脑向腹侧被盖区投射可能在基于奖励的学习中发挥作用,因此会导致上瘾行为,而向黑质内核投射可能有助于运动活力。最后,我们推测这些投射如何解释许多表明小脑在精神分裂症等精神障碍中发挥作用的观察结果。
帕金森氏综合症是一组涉及黑质纹状体多巴胺能途径的进行性神经退行性疾病,其特征是多种运动和非运动症状。这些综合征很普遍,可以深刻影响患者及其家人的生活。除了经典的帕金森病外,帕金森氏综合症还包括多种其他疾病,共同称为帕金森氏症综合症或非典型帕金森氏症。这些特征是帕金森氏帕金森运动症状,具有其他明显的临床特征。多巴胺转移者SPECT已开发为评估纹状体中多巴胺转运蛋白水平的诊断工具。使用碘123(123 I)ioflupane的成像评估可用于区分由黑质性变性引起的帕金森氏综合症与其他临床MIMICS,例如必需震颤或精神震颤。多巴胺转运蛋白成像在诊断帕金森氏综合症中起着至关重要的作用,尤其是在不明确符合诊断临床标准的患者中。诊断澄清可以使适当的患者早期治疗并避免误诊。目前,只有美国食品和药物管理批准了多巴胺转运蛋白SPECT的定性解释,但经常使用定量解释来补充定性解释。替代方法,以评估ni毛变性。作者提供了患者制备,常见成像发现以及放射科医生和核医学医师在执行和解释多巴胺转运蛋白检查时应知道的潜在陷阱的概述。
背景:铁过载在神经退行性疾病中很常见,尤其是阿尔茨海默病 (AD) 和帕金森病 (PD)。导致 HFE p.C282Y 变异的铁过载(血色素沉着症)纯合子患痴呆和 PD 的风险增加。脑铁沉积是一般人群中神经退行性生殖过程的因果关系还是继发性因素尚不清楚。方法:我们分析了 39,533 名具有欧洲遗传血统的英国生物库参与者的脑 MRI 数据。我们研究了通过 R2* 和定量磁化率映射 (QSM) 估计的 8 个皮质下区域的脑铁含量:伏隔核、杏仁核、尾状核、海马、苍白球、壳核、黑质和丘脑。我们进行了全基因组关联研究 (GWAS),并使用孟德尔随机化 (MR) 方法来估计脑铁对灰质体积以及 AD、非 AD 和 PD 风险的因果影响。我们还使用 MR 来测试 AD 或 PD 的遗传易感性是否与脑铁含量增加有关(R2* 和 QSM)。结果:在 R2* 和 QSM 的 GWAS 中,我们复制了 83% 的先前报告的基因位点,并在所有八个大脑区域中确定了 174 个其他位点。使用 R2* 和 QSM 预测的较高遗传预测脑铁与尾状核、壳核和丘脑的较低灰质体积相关(例如,Beta-壳核 QSM:- 0.37,p = 2*10 – 46)。更高的遗传预测丘脑 R2* 与非 AD 痴呆风险增加相关(OR 1.36(1.16;1.60), p = 2*10 – 4),但与 AD 无关(p > 0.05)。在男性中,遗传预测的壳核 R2* 会增加非 AD 痴呆风险,但在女性中则不会。更高的遗传预测尾核、壳核和黑质铁含量与 PD 风险增加相关(比值比 QSM ~ 黑质 1.21(1.07;1.37), p = 0.003)。AD 或 PD 的遗传易感性与痴呆或 PD 相关区域的 R2* 或 QSM 无关。解读:我们的基因分析支持了特定皮层下大脑区域铁沉积较高与帕金森氏症、灰质体积和非阿尔茨海默氏痴呆症之间的因果关系。
摘要:多年来,有证据表明胞质喹酮还原酶NQO2在帕金森氏症诱导的多巴胺神经元变性模型中可能的贡献作用,但大多数数据已在体外获得。因此,我们问了一个问题,NQO2是否参与MPTP的体内毒性,MPTP是一种经典用于帕金森氏病诱导神经变性的神经毒素。首先,我们表明NQO2在小鼠黑质中表达,nigra多巴胺能细胞体和人多巴胺能SH-SY5Y细胞也表达。一种高度特异性的NQO2抑制剂S29434能够减少具有星形胶质细胞U373细胞的SH-SY5Y细胞的共培养系统中MPTP诱导的细胞死亡,但在SHSY5Y单一培养物中无活性。我们发现S29434仅略微防止MPTP中毒在体内中的MPTP中的黑质酪氨酸羟化酶 +细胞损失。该化合物在第7天产生了多巴胺能细胞存活的略有增加,MPTP治疗后21个,尤其是1.5 mg和3 mg/kg剂量方案。未达到统计显着性的救援效应(除了在第7天进行了一个实验),并且在最新时间点随着4.5 mg/kg剂量的降低。尽管在小鼠MPTP模型中缺乏NQO2抑制剂的强大保护活性,但我们不能排除酶在帕金森氏变性中的可能作用,尤其是因为它在多巴胺能神经元中基本上表达。
A.个人陈述我是由Cagliari大学的Nicola Simola教授领导的神经心理药理学实验室的四年级研究员。在整个研究人员的职业生涯中,我对揭示多巴胺对基底神经节活动和各种神经病理学条件的网络的影响产生了深远的兴趣。目前,我的研究主要集中于通过翻译方法阐明涉及帕金森氏病实验模型中黑质纹状体多巴胺神经元进行性变性的早期病理变化。此外,我正在进行一项并发研究,以评估在心理刺激使用障碍的背景下,中溶胶途径中多巴胺能和胆碱能系统之间的相互作用。B.职位和荣誉
帕金森氏病(PD)涉及大脑能量稳态的破坏。这包括宽大的因素,例如线粒体功能障碍,糖酵解受损和其他代谢障碍,例如五肽磷酸盐途径和嘌呤代谢的破坏。皮质枢纽是高度连接的区域,对于协调多个大脑功能所必需的区域,由于其密集的突触活动和远距离连接而需要明显的能量。PD中ATP产生的缺陷会严重损害这些枢纽。 能量不平衡还会影响皮层下区域,包括由于其高代谢需求而导致黑质nigra pars compacta神经元的纹状体中的巨大轴突轴。 这种ATP下降可能会导致α-突触核蛋白的积累,自噬 - 溶酶体系统损伤,神经元网络分解和加速神经变性。 我们提出了一个“ ATP供应 - 需求不匹配模型”,以帮助解释PD的发病机理。 该模型强调ATP缺陷如何驱动病理蛋白质聚集,自噬受损以及关键脑网络的变性,从而有助于运动和非运动症状。PD中ATP产生的缺陷会严重损害这些枢纽。能量不平衡还会影响皮层下区域,包括由于其高代谢需求而导致黑质nigra pars compacta神经元的纹状体中的巨大轴突轴。这种ATP下降可能会导致α-突触核蛋白的积累,自噬 - 溶酶体系统损伤,神经元网络分解和加速神经变性。我们提出了一个“ ATP供应 - 需求不匹配模型”,以帮助解释PD的发病机理。该模型强调ATP缺陷如何驱动病理蛋白质聚集,自噬受损以及关键脑网络的变性,从而有助于运动和非运动症状。