本文已接受出版并经过完整的同行评审,但尚未经过文字编辑、排版、分页和校对过程,这可能会导致此版本与记录版本之间存在差异。请引用本文 doi: 10.1111/MMI.14821
这是以下文章的同行评审版本:An, S., Liao, Y., Shin, S. & Kim, M. (2022)。黑锗光电探测器的外部量子效率超过 160%。Advanced Materials Technologies,7(1),2100912‑,最终版本已在 Advanced Materials Technologies 上发表。本文可根据 Wiley 自存档版本使用条款和条件用于非商业用途。
4.1 总体维护检验 ................................................................................................................................ 4-2 4.1.1 术语 ...................................................................................................................................... 4-2 4.1.2 资质要求 ................................................................................................................................ 4-5 4.2 飞行前检查 ...................................................................................................................................... 4-7 4.3 飞行后检查 ...................................................................................................................................... 4-8 4.4 定期检查 ...................................................................................................................................... 4-8 4.4.1 定期检查间隔 ............................................................................................................................. 4-8 4.4.2 定期检查措施 ............................................................................................................................. 4-8 4.4.3 定期检查清单 ............................................................................................................................. 4-9 4.5 液体 ............................................................................................................................................. 4-16 4.5.1 发动机4.5.2 冷却液................................................................................................................................ 4-19 4.5.3 制动液................................................................................................................................... 4-20 4.5.4 燃油................................................................................................................................... 4-22 4.6 润滑............................................................................................................................................. 4-24 4.6.1 润滑基础知识....................................................................................................................... 4-24 4.6.2 推荐润滑剂.................................................................................................................... 4-24 4.7 机械装置调整............................................................................................................................. 4-26 4.7.1 扭矩............................................................................................................................. 4-26 4.8 必要的维护工具..................................................................................................................... 4-27 4.9 接入孔 ...................................................................................................................................... 4-27 4.10 刹车系统效率调整 ...................................................................................................................... 4-28 4.10.1 刹车片更换 ...................................................................................................................... 4-28 4.10.2 放气 ...................................................................................................................................... 4-29 4.11 控制面偏转设置 ...................................................................................................................... 4-30 4.11.1 副翼偏转调整 ...................................................................................................................... 4-30 4.11.2 襟翼偏转调整 ...................................................................................................................... 4-30 4.11.3 升降舵偏转调整 ...................................................................................................................... 4-31 4.11.4 方向舵偏转调整 ................................................................................................................ 4-31 4.11.5 调整配平片 ...................................................................................................................... 4-31 4.12 可转向前轮起落架调整 .............................................................................................................. 4-32 4.12.1 更换橡胶减震器 ...................................................................................................................... 4-32 4.13 发动机怠速调整 ............................................................................................................................. 4-33 4.14 轮胎充气压力 ............................................................................................................................. 4-34 4.15 清洁和保养 ............................................................................................................................. 4-35 4.15.1 飞机保养概述 ............................................................................................................................. 4-35 4.15.2 外表面清洁 ............................................................................................................................. 4-35 4.15.3 内部清洁 ............................................................................................................................. 4-35 4.15.4 驾驶舱机舱盖清洁 ................................................................................................................ 4-35 4.15.5 发动机维护 .............................................................................................................. 4-36 4.15.6 螺旋桨维护 ................................................................................................................................ 4-36 4.15.7 冬季运行.................................................................................................................... 4-37
9 本报告涵盖 2023 年 6 月 15 日至 2024 年 9 月 1 日期间。它基于各种来源的意见,包括波斯尼亚和黑塞哥维那政府、欧盟成员国、欧洲议会报告以及来自各种国际和非政府组织的信息。它还包括其他利益攸关方制作的比较评估和指数的结果,特别是在法治领域。该报告使用以下评估量表来描述现状:早期阶段、一定程度的准备、中等准备、良好准备和非常先进。为了描述报告期内取得的进展,它使用以下量表:倒退、没有进展、有限进展、一些进展、良好进展和非常好的进展。在适当的情况下,还采用了临时措施。
图3:通过独立分子的平均平面(〜(10 1 1̅))生成的傅立叶电势(F obs)图支持成功鉴定黄氨酸分子内的氢原子位置,从而确认存在7小时的互变素体。f obs是指观察到的结构因子。轮廓代表通过两个独立分子采集的平均平面计算出的电子电位。分子与平均平面有些偏差。因此,某些原子在轮廓上显示在“下方”。仅显示正电子电位。轮廓线之间的步骤代表电子电位的5%步骤。原子颜色如下:氮(蓝色),氧(红色),碳(灰色)和氢(白色)。使用ololex2生成。
摘要:随着可再生能源 (RES) 的整合,电力系统的控制和运行方式正在迅速改变。需要解决的新问题之一是 RES 在系统全部或部分故障时参与恢复过程的能力。然而,随着传统上提供黑启动支持的大型集中式发电机的不断关闭以及 RES 的可变性,恢复过程变得更加复杂。首先,RES 应该有足够的容量在恢复时为负载供电。尽管如此,由于其显著的优势,使用 RES 满足大型工业客户本地能源需求的趋势日益增加。转移负载的灵活性以及可再生能源发电的盈余可以在停电后系统通电过程中为系统操作员提供支持。本文主要关注确定大型工业消费者参与系统恢复过程应考虑的能力和因素。对英国一家大型钢铁厂进行的案例研究揭示了自下而上的方法支持恢复过程的可能性。
黑色士兵蝇(Hermetia Illucens)是一种潜在的昆虫物种,可以将可生物降解的材料和一些不可消化的有机废物转化为有价值的生物质。由于脂肪和蛋白质的质量高,因此它在动物饲料中的生产和使用日益延长。要满足未来的需求,搜索者正在试图找出成功的质量饲养技术。在实验室或室内状况下进行无关。但是,H最关键的部分。Illucens批量生产正在获得成功的交配。这种昆虫对光非常敏感。它更喜欢阳光的成功交配,但是人造光对其交配行为具有重大影响。据报道,光质量,强度,持续时间对H产生了显着影响。毫无意义地交配和受精的鸡蛋产生。本评论带来了有关h的人造光效应的所有信息。在室内条件下成功地交配成年人。
褪黑激素具有释放自由基的特性,有助于成熟卵和受精过程。此外,研究表明,褪黑激素有望治疗子宫内膜异位症患者,这是一种良性疾病,其特征是子宫外子宫内膜组织的发展。结论:关于褪黑激素及其对女性生殖系统影响之间关联的研究正在进行中,但是到目前为止,结果是有希望的,显示出对生育能力和子宫疾病治疗的积极影响。关键字:褪黑激素,效果,女性生殖系统。抽象简介:褪黑激素是松果体产生的激素,以其在常规睡眠效果周期中而闻名。最近,研究HAE在女性生殖系统,生育能力和子宫内膜异位症的发展中的重要性。目标:本文旨在通过文献综述来阐明褪黑激素对女性生殖系统的影响。材料,主题和方法:在过去五年中,从2019年到2024年,在发布和Scielo等数据库中进行了搜索。结果:证据表明,褪黑激素具有释放自由基的特性,有助于卵成熟和受精过程。此外,研究表明,褪黑激素有望治疗患有痛异常的患者,良性疾病的特征是子宫外子宫内膜组织的发展。关键字:褪黑激素,效果,女性生殖系统。Wokes Clave:褪黑激素,效果,女性生殖系统。结论:关于褪黑激素及其对女性生殖系统影响之间关联的研究正在进行中,但到目前为止,结果是有希望的,对生育能力和子宫疾病的治疗表现出积极影响。 div>摘要简介:褪黑激素是松果体产生的激素,以其在睡眠 - 视觉周期的调节中的作用而闻名。 div>最近,研究表明它们在女性生殖系统中的重要性,影响了子宫内膜异位症的生育能力和发展。 div>目标:本文旨在通过文献综述阐明褪黑激素对女性生殖系统的影响。 div>材料,主题和方法:在过去的五年中,从2019年到2024年,对PubMed和Scielo等数据库进行了搜索。结果:证据表明褪黑激素具有自由基解放特性,有助于胚珠的成熟和受精过程。 div>此外,研究表明,褪黑激素有望在子宫内膜异位症患者的治疗中,这是一种良性疾病,其特征是子宫外子宫内膜组织的发展。 div>结论:关于褪黑激素及其对女性生殖系统影响之间关联的研究正在进行中,但到目前为止的结果令人鼓舞,对生育能力和子宫疾病的治疗产生了积极影响。 div>
本战略由索伦特涉禽与黑雁战略指导小组 (SW&BGS 小组) 制定。SW&BGS 小组由以下组织组成:汉普郡和怀特岛野生动物信托基金 (HIWWT) 英国自然保护署 (NE) 英国皇家鸟类保护协会 (RSPB) 汉普郡议会 (HCC) 海岸合作伙伴 汉普郡鸟类学会 本文以 2010 年索伦特涉禽与黑雁战略为基础。Deborah Whitfield (HIWWT) 与 SW&BGS 指导小组共同对文本进行了更新。地图和 GIS 图层由 Deborah Whitfield (HIWWT) 根据英国地形测量局 (编号 100015632 和英国地形测量局开放数据) 许可制作。本战略的引用应为:Whitfield, D (2020) 索伦特涉禽与黑雁战略汉普郡和怀特岛野生动物信托基金。Curdridge。地图由汉普郡和怀特岛野生动物信托基金会(大地测量局许可证编号 100015632)复制,经女王陛下文具办公室许可,皇家版权 2019。未经授权的复制侵犯了版权,可能会导致起诉或民事诉讼。封面插图:Dan Powell 创作的黑雁 出版商:汉普郡和怀特岛野生动物信托基金会 Beechcroft House Vicarage Lane Curdridge Hampshire SO32 2DP 一家在英格兰担保和注册的有限公司,编号 676313;慈善机构编号 201081。提供的所有评估和建议均基于汉普郡和怀特岛野生动物信托基金会 (HIWWT) 掌握的信息,HIWWT 致力于确保所有建议在发布时准确且适当。但是,接收者有责任确保他们采取的任何行动符合法律和合同规定,HIWWT 不承担因我们提供的建议而产生的任何损失的责任或义务。未经许可,不得复制本文件的任何部分。本报告中包含的信息仅供 Solent Waders 和 Brent Goose Strategy 指导小组和地方当局合作伙伴使用。未经指导小组和 HIWWT 明确许可,不得将本报告中的所有其他信息传递给任何第三方。有关如何获取本文件和随附数据的更多副本的信息,请联系 HIWWT:feedback@hiwwt.org.uk
摘要 — 本文介绍了我们对基于逆变器的资源 (IBR) 驱动的电网黑启动的研究结果。介绍了四种具有不同设置的潜在黑启动配置。为了评估四种配置中 IBR 驱动黑启动的技术可行性,在 MATLAB Simulink/Simscape 环境中使用可变电阻开发了模拟限流逆变器操作的逆变器行为模型。逆变器模型通过变压器和输电线连接到感应电机以模拟其启动。仿真结果表明,即使由于物理限制,逆变器的电流供应能力有限,IBR 也可以在某些条件下黑启动电机。结果还表明,通过使用软启动技术(例如斜坡电源电压),可以降低浪涌电流,从而扩大 IBR 可以提供黑启动支持的条件。不同场景的模拟结果引发了讨论和关键要点,这可能对进一步的 IBR 驱动黑启动研究很有价值。