美国一些核电站将乏核燃料储存在干式贮存系统 (DCSS) 中。在许多情况下,DCSS 由一个金属储存罐组成,储存罐位于混凝土拱顶或外包装内,用于屏蔽辐射。大多数罐由奥氏体不锈钢制成,包括 UNS S30400(304 SS)。混凝土拱顶或外包装与大气相通,以进行被动冷却,从而使罐与周围环境相互作用。在沿海环境中,空气中的盐分会随着时间的推移沉积并积聚在罐表面。这些盐在潮湿环境中的潮解会在罐表面形成富含氯化物的盐水。再加上残余拉应力的存在,这可能会使罐容易受到氯化物诱导的应力腐蚀开裂。
将 50 公斤焦炭样品小心地装入转鼓中,彻底清除所有之前的残留物,以避免破损,然后盖上盖子。以恒定速度旋转转鼓,在 4 分 10 秒内完成 100 转。100 转后停止转鼓;揭开盖子,小心地取出产品,并在 40 和 10 毫米筛子上筛分。如果需要,可以使用 60 毫米、20 毫米或其他尺寸的筛子。确定并记录累积质量,以尽量减少累积百分比中的称重误差。所有馏分的质量总和与装入的焦炭质量之间的任何差值都应加到 10 毫米以下馏分的质量中。如果该损失超过装入焦炭质量的 0.7%,则测试不合格。
一项新计划已开始招募合作者,以使气雾罐回收变得像铝罐、瓶子和报纸回收一样普遍。这项名为 Aerosolv Nation 的新计划旨在解决仅在美国每年售出的约 35 亿个气雾罐的问题,其中大部分最终都被送入危险废物填埋场或垃圾场,而不是得到适当的回收。来自北美和其他几个国家的 50 多所高校的代表在高等教育可持续发展促进协会会议上签署了这项倡议。他们被称为“Aerosolv 大使”,并将在未来几周在其社区启动该计划。Aerosolv 是唯一获得 EPA 环境技术认证的气雾罐回收技术。它是一种安全、经济、高效的技术,可用于准备气雾罐以进行适当的回收。全球范围内,已有超过 47,000 套 Aerosolv 系统被大学、市政当局、企业、政府机构和大型制造商使用,回收了约 6000 万个气雾罐。
铝的独特之处在于它可以无限回收而不会降低其质量。虽然大多数工业铝市场(包括运输业)的回收率超过 90%,但美国消费者对铝饮料罐的回收率低于 50%。近年来,市政回收基础设施老化和市场变化共同降低了这一比率,给行业和环境带来了挑战。回收更多的铝罐意味着我们可以用旧罐制造更多的新罐。这将大大减少碳排放,因为从原材料制造罐头所需的能源节省了约 95%。2021 年,铝业协会发布了一份新的第三方生命周期评估 (LCA) 报告,显示北美制造的铝罐的碳足迹在过去三十年中下降了近一半。LCA 还发现,回收一个罐头可节省 1.56 兆焦耳 (MJ) 的能源或 98.7 克二氧化碳当量。这意味着仅回收一包 12 个铝罐就能节省的能源足以为普通乘用车行驶约三英里。回收目前每年进入美国垃圾填埋场的铝制饮料罐所节省的能源可以为经济节省约 8 亿美元,并且足够为 200 多万户家庭供电一整年。随着需求增加和行业对新生产能力的投资,我们将需要回收更多的罐子来制造更多的金属。回收退款计划容器押金制度或回收退款计划在推动铝制饮料罐回收方面发挥着重要作用。回收退款计划在消费者购买时向消费者收取退款价值(通常为 5 美分或 10 美分),鼓励消费者归还容器,同时退还押金。目前,美国 10 个州和关岛(以及全球许多其他国家)都已实施此类制度。目前,没有联邦回收退款计划。
本文介绍了一种利用烟囱废气加热水的热回收系统 (HRS)。本文通过实验手段对 Khaled 等人提出的一种名为“多管罐”的废热回收系统进行了优化。文中详细描述了该系统的设计,并进行了组装和测试。为了研究改变头部形状对系统性能的影响,本文构建了两个不同的头部:一个圆柱形 (Cyl) 和一个锥形 (Con)。结果表明,锥形头部 (ConH) 的性能优于圆柱形头部 (CylH)。具体来说,在 275 分钟内,CylH 系统可将水温升高到最高 59 ◦ C,而 ConH 系统可将水温升高到 68 ◦ C。此外,在 400 分钟内,ConH 系统可将水温升高到 80 ◦ C。此外,经济和环境分析表明,当系统每月使用 140 次,每次 275 分钟时,ConH 系统可比 CylH 系统每月节省约 16 美元。此外,ConH 系统的投资回收期约为 CylH 系统的一半(6 个月)。最后,当系统每月使用 140 次时,ConH 系统可比 CylH 系统每年减少 2 吨二氧化碳排放。
该设备包括一个十层卡架的三个托架,可容纳 700 多块可拆卸印刷电路板。这些电路板分为三个功能逻辑单元,与两个雷达 IFF 数据处理 (RIDP) 鼓一起作为组件工作,形成编程和计算设备。附加设备包括两个模块,每个模块分别是 IFF 解码器、视频量化器和鼓伺服器,支持各自的 RIDP 鼓组件。该设备从 AN/UPS-1 和 AN/TPS-22 雷达接收 2D 雷达信息,适当处理并将数字目标信息传送到相关的 TAOC 设施,以便随后进行处理和显示。具体而言,该设备检测雷达视频输入中目标模式的存在,为每个目标生成方位角和距离,从目标中分离噪声,确定目标是否适合自动捕获,并检查是否有确凿的 IFF 视频。
此外,米娅还委托了跨学科艺术团体 Postcommodity,该团体由克里斯托巴尔·马丁内斯 (生于1974 年,美国) 和凯德·L·特威斯特 (生于1971 年,美国) 组成,旨在创作一个特定场地的装置,以评论土著社区的被迫流离失所以及人类关系的复杂性,这些关系因共享水源而越来越难以保护和防止浪费和污染。这件气势宏伟的作品名为《让我们为我们之间的水祈祷》(2020),将一个大型化学储罐(常用于农业)变成了一个自动演奏的鼓,悬挂在米娅的圆形大厅的天花板上。鼓的放置是一种概念性姿态,有意挑战对米娅的 Doryphoros 等物品的崇拜——希腊人认为它是理想的人类形态——作为西方艺术历史经典的基础。艺术家们将用悬浮的礼仪鼓代替 Doryphoros,这面鼓将回荡着一首为达科他人以及现在居住在达科他传统家园的所有国家的所有部落创作的荣誉歌曲。这种置换象征性地颠覆了博物馆的殖民基础,并试图强行拆除或去殖民化历史上歧视土著人民及其文化的制度结构。
鼓管式热交换器 • 热交换器采用镀铝钢制成,配有不锈钢部件,可实现最大耐用性。ANSI Z21.47 要求对热交换器进行 10,000 次循环测试。这是 UL 和 AGA 对循环测试要求的标准。美国标准要求对设计进行 2½ 倍的测试。鼓管式设计已经过测试,通过了 150,000 次循环,是当前 ANSI 循环要求的 15 倍以上。• 除非燃烧鼓风机正在运行,否则负压气阀不会允许气体流动。这是我们独特的安全功能之一。• 强制燃烧鼓风机通过单个不锈钢燃烧器屏幕将预混燃料输送到密封鼓中,然后点火。与多燃烧器系统相比,它更易于操作和维护。• 热表面点火器是一种气体点火装置,它兼作安全装置,利用连续测试来验证火焰。该设计在工厂经过循环测试,以确保质量和可靠性。• 我们的燃气/电力屋顶超过了加州所有季节性效率要求,性能甚至优于加州氮氧化物排放要求。
搅拌槽式生物反应器最初是基于传统微生物发酵罐的设计原理,严重依赖不锈钢技术。因此,搅拌槽式生物反应器中大多数鼓泡系统的设计并不适用于哺乳动物细胞培养。典型的微生物发酵罐依靠高剪切搅拌器(如 Rushton 叶轮)来破碎效率较低的鼓泡器设计中形成的气泡。再加上高气体流速,这会导致剧烈的气体分布以提供足够的质量传递。虽然大多数微生物发酵培养物(如大肠杆菌)在这些条件下都能生长良好,但哺乳动物细胞培养通常需要使用斜叶片或船用叶轮的温和混合方式,以及较低的气体剪切速率,这需要设计不同的鼓泡器 [1–3]。因此,对于现代细胞培养生物反应器而言,精心设计分布器的材料、孔径和数量、分布器的几何形状、相对于叶轮的位置、有效气体流量范围以及由此产生的操作气体入口速度至关重要。
Intellihot的Electron IB3是一个启用网格的热电池和一个商业规模的无罐热水器。IB3可以与Intellihot的CO2热泵模型(IE6)搭配,作为热电池,以产生点播热水。IB3也可以作为独立的网格商业规模的无电罐热水器运行。