引言术后疼痛是一种急性疼痛,始于手术创伤,并随组织愈合而逐渐减少。此外,吸烟与这种疼痛之间存在关系。吸烟对麻醉和疼痛的影响很复杂,尚不清楚。然而,众所周知,香烟含有尼古丁并且具有镇痛性,并且在内脏疼痛模型1中已证明这一点。尼古丁由于其药理特征可能会影响许多生理系统。它通过激活尼古丁特异性受体并释放许多不同的神经主角,影响周围和中枢神经系统(CNS),心血管和胃肠道系统以及外分泌腺。已经表明,慢性尼古丁的使用增加了疼痛的感知,急性尼古丁的使用提供了镇痛作用2,3。虽然它可能具有镇痛作用
是后塔马。它是三个身体区域中最长的。与身体其余部分相比,通常相当柔软。身体细分在腹部更为明显。它由11个望远镜段组成。这些段与称为Conjunctiva的段膜连接在一起,这使腹部更加柔韧。腹部柔韧性是交配和产卵的必要条件。每个片段由拱形的背侧巩膜,Tergum和一个小的腹板胸骨组成。没有胸膜,tergum通过薄膜连接到胸骨。椭圆形的透明听觉膜,在第一个腹部段的两侧横向发现鼓膜。有八对腹螺旋。第一对位于第一个腹部节段的鼓膜的tront,其余七对在Tergum的侧面从二到第八腹部段落。
抽象目的骨螺旋层(OSL)是一种内部耳蜗骨结构,它从近二匹底座从底座到顶点,将耳蜗运河分离到Scala castibuli和Scala Tympani。OSL的孔隙率最近引起了科学家的注意,因为它的潜在影响了整体声音转导。OSL的Ves-tibular和鼓膜板之间的骨支柱在常规的组织病理学研究中并不总是可见的,因此通常缺乏或不完整的此类结构的成像。通过这项试点研究,我们首次瞄准了解剖学上的OSL详细证明和3D。方法,我们使用MicroCT使用较高的标称分辨率来测量人OSL的宽度,厚度和孔隙率,最高可达2.5 µm Voxel的大小。此外,从CT数据集创建了基础和中间的单个板的3D模型。结果,我们发现从基础转向顶端到顶点的鼓膜板和前庭板中孔隙率持续存在。鼓膜板似乎比基础和中间转弯的前庭板更多孔,而顶端中的多孔则较少。此外,3D重建使位于OSL板之间的骨支柱可以详细观察到。结论通过增强我们对OSL的理解,我们可以提高对听力机制的理解,并提高耳蜗模型的准确性和有效性。
参考文献 1. Marchioni D、Alicandri‐Ciufelli M、Molteni G、Artioli FL、Genovese E、Presutti L。选择性上鼓室通气障碍综合征。喉镜 2010;120:1028-33。[Crossref] 2. Padurariu S、Roosli C、Roge R、Stensballe A、Vyberg M、Huber A 等。关于正常中耳的功能区室化。其粘膜的形态组织学建模参数。听力研究 2019;378:176-84。[Crossref] 3. Ars B、Dirckx J。耳咽管功能。北美耳鼻喉科临床 2016;49:1121-33。 [交叉引用] 4. Alicandri-Ciufelli M、Gioacchini FM、Marchioni D、Genovese E、Monzani D、Presutti L. 乳突:人类的退化功能?医学假设2012; 78:364-6。 [交叉引用] 5. Marchioni D、Grammatica A、Alicandri-Ciufelli M、Aggazzotti-Cavazza E、Genovese E、Presutti L。选择性通气不良对阁楼中耳病理学的贡献。医学假设2011; 77:116-20。 [Crossref] 6. Shirai K、Schachern PA、Schachern MG、Paparella MM、Cureoglu S。慢性中耳炎的鼓室容积和鼓室峡部阻塞:人类颞骨研究。Otol Neurotol 2015;36:254-9。[Crossref] 7. Proctor B。中耳腔的发育及其外科意义。The J Laryngol Otol 1964;78:631-45。[Crossref] 8. Marchioni D、Mattioli F、Alicandri-Ciufelli M、Molteni G、Masoni F、Presutti L。中耳通气通路阻塞的内窥镜评估。Am J Otolaryngol 2010;31:453-66。 [Crossref] 9. Shinnabe A、Hara M、Hasegawa M、Matsuzawa S、Kanazawa H、Kanaza- wa T 等。在超声心动图检查中,松弛部和紧张部胆脂瘤在中耳通气障碍方面的差异以及鼓室和乳突气化的模式。耳鼻喉科 2012;33:765-8。[Crossref] 10. Marchioni D、Molteni G、Presutti L。内窥镜中耳解剖学
抽象背景:温度波动是重症监护病房(ICU)中患者状况的关键指标。侵入性方法对核心温度进行了更可靠的测量,但它们具有更大的并发症风险,从而限制了它们在大多数情况下的使用。这强调了研究评估非侵入性温度监测方法的可靠性的需求。目标:本研究旨在评估与肺动脉温度相比,四种非侵入性温度测量技术的准确性和精度,该技术被认为是金标准。设计和设置:我们在巴西的Belo Horizonte的Belo Horizonte的FelícioRocho联邦De Minas Gerais和医院FelícioRocho医院进行了ICU进行了横断面临床研究。方法:包括所有患有肺动脉导管的患者。我们同时记录了肺动脉,腋窝,口腔,颞动脉和鼓膜的温度。平淡的阿尔特曼图被用来评估不同温度测量的一致性。结果:共有48名患者,平均年龄为54岁。女性占样本的66.67%。与肺动脉温度相比,非侵入性方法的准确性和精度(平均和稳定偏差)为:腋窝(-0.42°C,0.59°C),口服(-0.30°C,0.37°C),tymbrane(-0.37°C),tympanic membrane(-0.21°C,-0.21°C,0.444444444444444444444444444444444444444444444444.44444444.44444444444444.4444444.444444444444.444444444444.44444444444444.42°C)。 (-0.25°C,0.61°C)。在非侵入性方法中,鼓膜膜测量被证明是最可靠的,其次是口服方法。值得注意的是,在体温异常(非等准体温度)的患者中,只有口服和鼓膜方法保持其准确性和精度。结论:与肺动脉温度相比,这项研究中评估的非侵入性温度计表现出可接受的认可和精度(在临床相关阈值0.5°C)中。
3。扁桃体 /腺样体手术4。< / div>任何类型的囊肿,结节,息肉5。任何类型的乳房团块6。前列腺肥大的前列腺切除术7。子宫切除术,用于子宫或女性生殖系统其他部位的良性条件8。肌瘤子宫切除术9。 心脏病。 10。 任何类型的癌症11。 胃溃疡和十二指肠溃疡12。 甲状腺良性疾病的甲状腺切除术13。 Varicocele 14。 精子素15。 直肠脱垂16。 扩张和凝结(D&C)17。 视网膜病的玻璃体切除术和视网膜脱离手术18。 糖尿病及其直接并发症19。 瘘管在ANO20。中 ANO 21中的裂缝。 Hernia 22。 氢化疏松23。 痔疮24。 鼻窦炎25。 联合替换程序26。 慢性肾衰竭(CRF)或末期肾衰竭27。 白内障28。 乳突切除术(可去除耳后骨头的手术)29。 鼓膜成形术(修复鼓膜膜的手术,即 耳朵)30。 Genito尿路手术31。 痛风32。 风湿病,骨关节炎,脊椎病或脊椎炎,退化性椎间盘脱垂和所有其他退行性关节疾病33. 高血压34。 静脉曲张和静脉曲张溃疡肌瘤子宫切除术9。心脏病。10。任何类型的癌症11。胃溃疡和十二指肠溃疡12。甲状腺良性疾病的甲状腺切除术13。Varicocele 14。精子素15。直肠脱垂16。扩张和凝结(D&C)17。视网膜病的玻璃体切除术和视网膜脱离手术18。糖尿病及其直接并发症19。瘘管在ANO20。ANO 21中的裂缝。Hernia 22。氢化疏松23。痔疮24。鼻窦炎25。联合替换程序26。慢性肾衰竭(CRF)或末期肾衰竭27。白内障28。乳突切除术(可去除耳后骨头的手术)29。鼓膜成形术(修复鼓膜膜的手术,即耳朵)30。Genito尿路手术31。痛风32。风湿病,骨关节炎,脊椎病或脊椎炎,退化性椎间盘脱垂和所有其他退行性关节疾病33.高血压34。静脉曲张和静脉曲张溃疡
1。偏头痛 /血管头痛2。< / div>尿液系统中的石头3。大型系统中的石头4。扁桃体 /腺样体手术5。< / div>任何类型的囊肿,结节,息肉6。任何类型的乳房肿块7。脊椎病/脊柱炎的治疗 - 任何8型。IVDP和其他退行性疾病9。良性肥厚前列腺切除术10。子宫切除术/肌瘤切除术是由于肌瘤和/或Mennorhagia11。心脏病12。任何类型的癌/肉瘤/血液癌13。任何关节的骨关节炎14。胃和十二指肠溃疡15。甲状腺切除术,用于结节/多管状甲状腺肿16。Varicocele 17。精子素18.直肠脱垂19。D&C 20。视网膜病的玻璃体切除术和视网膜脱离手术21。由于糖尿病而截肢22。瘘管在ANO 23。ANO中的裂缝24。疝气25。氢密膨胀26。鼻窦炎27。膝盖 /髋关节置换28。< / div>CRF或末期肾衰竭29。白内障30。乳突切除术(可去除耳后骨头的手术)31。鼓膜成形术(修复鼓膜膜的手术又名耳膜)32。未降低的睾丸33。Genito尿路手术34。痛风35。风湿病36。高血压37。DM 38。静脉曲张和静脉曲张溃疡39。痔疮(桩)
颅内压 (ICP) 升高通常在多种情况下进行筛查,包括脑积水、假性脑瘤和创伤 [1]。测量 ICP 的标准实践包括腰椎穿刺,通过压力计测量脑脊液开放压力,或通过应变计传感的外部脑室引流盐水柱的直接颅内接口测量脑脊液开放压力 [2]。这显然是侵入性的,而且往往会让患者感到不舒服。需要常规 ICP 监测的患者必须定期忍受这一过程 [3]。显然需要一种微创或非侵入性技术来筛查 ICP 升高 [4]。许多研究试图开发非侵入性方法来识别 ICP 升高,例如经眼超声、颈动脉多普勒和耳蜗导水管传输 [2,5,6]。然而,到目前为止,还没有一种被证明足够可靠以用于临床实践 [2,4- 7]。一种有趣的技术是利用鼓膜搏动来推导 ICP [8,9] 。该技术最早在 20 世纪 70 年代被描述,利用了脑脊液 (CSF) 和中耳之间通过耳蜗导水管 [10] 的已知通道。许多研究表明,这种连接可以将心脏搏动波形 (ICP 波形) 传输到鼓膜 (TM),并可以从 TM 搏动中推导 ICP 波形 [10-14] 。尽管之前的测试已经能够推导这种波形,但耳蜗导水管多变的声学特性往往使得经典的 ICP 波形指标(如振幅和时间平均值)不可靠 [2,15] 。这种限制,加上最初检测这些波形所需的笨重而复杂的设备,使得这种
摘要:听觉过程涉及一系列事件。外耳捕获声音的能量,并通过外耳道进一步传输到中耳。在中耳,声波被转换成鼓膜和听小骨的运动,从而放大压力,使其足以引起耳蜗液的运动。耳蜗内的行波导致内耳毛细胞去极化,进而释放神经递质谷氨酸。从而,螺旋神经节神经元被激活,通过听觉通路将信号传输到初级听觉皮层。这种复杂的机械感觉和生理机制组合涉及许多不同类型的细胞,其功能受许多蛋白质的影响,包括参与离子通道活动、信号转导和转录的蛋白质。在过去 30 年中,超过 150 个基因的致病变异被发现与听力损失有关。听力损失影响着全球超过 4.6 亿人,目前