Tejado等人,2011年指出,需要准确的控制器以确保在导航期间安全。他们着重于设计用于雪铁龙自动型原型的低速控制的分数PI控制器的实现。他们得出结论,测试显示了提出的控制器的有效性[1]。Cohring,2012年为德国自动驾驶汽车提供了实时控制器体系结构。他描述了一种算法,证明了其在柏林茂密的城市交通中的适用性[2]。Alonso,Oria,Al-Hadithi和Jimenez,2013年,2013年提出了一个在线自我调整的PID控制器,用于控制车辆,沿着距离和速度在城市交通中典型的速度和速度。他们提出了一种调整技术,以改善不同输入或噪声存在下的鲁棒性[3]。
摘要:使用基于范德华校正的密度功能理论(Rev-VDW-DF2函数),使用使用机器学习的原子质势模拟了温度诱导的相变和离子电导率。阶 - 疾病相变的模拟温度,晶格参数,扩散,离子电导率和激活能与实验数据非常吻合。我们对Li 2 B 12 H 12的模拟发现了[B 12 H 12] 2-阴离子的重新定位运动的重要性。在有序的α-相(t <625 K)中,这些阴离子具有明确的方向,而在无序的β-相(t> 625 K)中,它们的方向是随机的。在空缺系统中,观察到其完整的旋转,而在理想的晶体中,阴离子显示有限的vabrational运动,表明没有动态无序的相位过渡的静态性质。使用机器学习间的原子势使我们能够以长(纳秒尺度)分子动力学研究大型系统(> 2000个原子),从头开始质量。关键字:密度功能理论,机器学习间原子潜能,固体电解质,相变,离子电导率
这项工作提出了一种方法,将基于组件的降阶模型库与贝叶斯状态估计相结合,以创建数据驱动的基于物理的数字孪生。降阶建模产生的基于物理的计算模型足够可靠,可用于预测数字孪生,同时仍然可以快速评估。与传统的整体模型降阶技术相比,基于组件的方法可以有效地扩展到大型复杂系统,并为快速模型自适应提供灵活且富有表现力的框架——这两者都是数字孪生环境中的关键特性。数据驱动的模型自适应和不确定性量化被表述为贝叶斯状态估计问题,其中传感器数据用于推断模型库中的哪些模型是数字孪生的最佳候选者。通过为 12 英尺翼展无人机开发数字孪生来展示这种方法。离线时,我们构建了一个原始和受损飞机部件库。在线时,我们使用结构传感器数据快速调整基于物理的飞机结构数字孪生。数据驱动的数字孪生使飞机能够根据结构损坏或退化动态地重新规划安全任务。
摘要:本文通过计算位置熵和动量熵,研究了分数阶薛定谔方程(分数阶导数(0 < n ≤ 2))中两个双曲单阱势的 Shannon 信息熵。我们发现,随着分数阶导数 n 的减小,波函数会向原点移动;在分数阶体系中,即当 n 值较小时,位置熵密度局域化程度越来越严重,而动量概率密度非局域化程度越来越高。然后,我们研究了 Beckner Bialynicki-Birula–Mycieslki(BBM)不等式,发现虽然该不等式随着双曲势 U 1 (或 U 2 )的深度 u 的增加而逐渐减小(或增大),但 Shannon 熵对于不同的深度 u 仍然满足该不等式。最后,我们还进行了 Fisher 熵的计算,发现 Fisher 熵随势阱深度 u 的增加而增大,分数阶导数n减小。
图1:(a)横向设备结构的示意图,(b)悬挂式sin鼓的SEM图像,上面覆盖了25 nm al薄纤维。为了最大程度地减少金属对阻尼的贡献,在大多数夹紧区域中都不存在。16该薄片通过两个矩形Al电极与外部电极连接。(c)最终设备结构的SEM图像,其中Al/sin电容偶联具有悬浮的顶门,以及(d)测量设置的示意图,其中PCB部分上的微波腔以焦糖颜色标记。微波炉通过连接到其悬浮的顶门的粘合线与sin鼓(紫色)耦合。用Al薄片覆盖的Sin鼓通过粘结线连接到两个微带传输线。一个用于驱动机械谐振器,另一个用于通过微波反射方案17检测机械运动。更多详细信息显示在支持信息(SI:纳米化,微波炉重新射击的设置和建模)中。
a 里卡多·豪尔赫国立卫生研究所,流行病学系,里斯本,1600-609,葡萄牙 b 特拉什奥斯蒙特斯和上杜罗大学(UTAD),数学系,维拉雷亚尔,5000-801,葡萄牙 c 高等技术学院,数学系,里斯本,1049-001,葡萄牙 d 生物统计学和统计生物信息学跨大学研究所,数据科学研究所,哈瑟尔特大学,比利时 e 卫生经济研究和传染病建模中心,疫苗和传染病研究所,安特卫普大学,比利时安特卫普 f 新国立公共卫生学院,公共卫生研究中心,里斯本新大学,葡萄牙
摘要 – 电极和神经元之间界面的电特性高度依赖于界面几何形状和其他参数。有限元模型在一定程度上可用于研究这些特性。不幸的是,这种模型在计算上非常昂贵。通过简化这些模型,可以减少计算时间。在这项工作中,我们使用基于 Krylov 子空间的模型降阶来简化电极-神经元界面的简化线性化有限元模型。这有助于在系统级耦合到 Hodgkin-Huxley 模型,并大大减少了计算时间。原始有限元模型的精度在很大程度上得以保留。关键词:神经元-电极界面,Hodgkin-Huxley 模型,模型降阶,有限元模型 1. 简介
1 用于相位估计算法的 Kitaev 电路。....................................................................................................................................20 2 实现量子傅里叶变换的电路。....................................................................................................................................23 3 实现相位估计算法的电路。....................................................................................................................................24 4 以一般状态 | ψ ⟩ 作为上寄存器输入的相位估计算法电路。....................................................................................................................................27 5 n = 3 时 α 0 (左) 和 α 1 (右) 的 DTFT 幅度。.................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 10 P ( r = ˆ r ) 的下限 . ...
本研究对量子力学中出现的一维时间分数阶非线性薛定谔方程进行了分析研究。在本研究中,我们建立了 Sumudu 变换残差幂级数法 (ST-RPSM) 的思想,以生成具有分数阶导数的非线性薛定谔模型的数值解。提出的思想是 Sumudu 变换 (ST) 和残差幂级数法 (RPSM) 的组合。分数阶导数取自 Caputo 意义。所提出的技术是独一无二的,因为它不需要任何假设或变量约束。ST-RPSM 通过一系列连续迭代获得其结果,并且得到的形式快速收敛到精确解。通过 ST-RPSM 获得的结果表明,该方案对于非线性分数阶模型是真实、有效和简单的。使用 Mathematica 软件以不同的分数阶级别显示一些图形结构。
用于牵引和储存空气制动系统和列车空气信号线。有时放置在司机室甲板下或导架前方的框架之间:但不常用两个,放置在司机室附近的驾驶室板下,在引擎盖的每一侧各一个。\'i^>。7 -irn»i.rt 空气鼓 空气鼓头。 空气鼓的末端,圆柱体铆接或焊接于其上。 空气鼓鞍座。 一条用于支撑空气鼓或空气鼓的带状物。 位于气缸座和导轭之间。 空气压力表(空气制动器)。 图。 24a3-24fl() 压力表用于记录储液器、制动管或制动缸中的空气压力,类似于普通蒸汽压力表。 它们 .ir.- ;ii.i 光。-irn»i.rt 空气鼓 空气鼓头。空气鼓的末端,圆柱体铆接或焊接于其上。空气鼓鞍座。一条用于支撑空气鼓或空气鼓的带状物。位于气缸座和导轭之间。空气压力表(空气制动器)。图。24a3-24fl() 压力表用于记录储液器、制动管或制动缸中的空气压力,类似于普通蒸汽压力表。它们 .ir.- ;ii.i 光。光。