关于Vaxxel Vaxxel 是国际研究实验室 RESPIVIR 法国 - 加拿大(CIRI - 国际传染病学研究中心、INSERM - 国家健康与医学研究所、CNRS - 国家科学研究中心、UCBL - 克劳德伯纳德里昂第一大学、里昂高等师范学院,法国)的衍生公司,由 Manuel Rosa-Calatrava 博士(里昂)和 Guy Boivin 教授(加拿大魁北克拉瓦尔大学)领导,并由 Vaxxel 首席执行官 Denis Cavert 领导。 Vaxxel 正在基于多功能粘膜 LAV Metavac® 疫苗平台开发减毒活病毒作为针对人类亚肺病毒和呼吸道合胞病毒的候选疫苗。该平台由 Pulsalys 技术转让办公室和里昂第一大学的子公司里昂工程项目 (LIP) 资助和授权。针对亚肺病毒 (一种呼吸道合胞病毒) 的首个双价候选疫苗的临床前概念验证已在重建的人类上皮气道上皮和动物临床前模型上得到证实。该公司获得了由高等教育、研究和创新部与 Bpifrance 合作举办的 2019 年 i-Lab 奖,同时还获得了法国“Deeptech”标签。
摘要:缺氧 - 缺血性脑损伤是由于对大脑的氧气递送不足而引起的,心脏骤停后发生,缺乏有效的治疗。最近的研究表明,从间充质干细胞释放的外泌体的治疗潜力。鉴于与静脉内给药相关的全身稀释的挑战,鼻内递送已成为一种有前途的方法。在这项研究中,我们研究了鼻内施用外泌体在动物模型中的影响。 使用超速离心方法从细胞上清液中分离出外泌体。 通过瞬态四血管闭塞模型在Sprague-Dawley大鼠中诱发了脑损伤。 单独使用3×10 8外泌体的鼻内给药,仅在20 µL的PBS或PBS中进行,每天在伤害后每天进行7天。 进行了长期认知行为评估,外泌体的生物分布以及凋亡和神经炎症的组织学评估。 外泌体在鼻内给药后一小时主要在嗅球中检测到,随后分配给纹状体和中脑。 用外泌体处理的大鼠在侮辱后长达28天表现出认知功能的显着改善,并且在海马中显示出明显较少的凋亡细胞以及较高的神经元细胞存活。 外泌体被小胶质细胞吸收,导致细胞毒性炎症标志物的表达降低。在这项研究中,我们研究了鼻内施用外泌体在动物模型中的影响。外泌体。通过瞬态四血管闭塞模型在Sprague-Dawley大鼠中诱发了脑损伤。单独使用3×10 8外泌体的鼻内给药,仅在20 µL的PBS或PBS中进行,每天在伤害后每天进行7天。进行了长期认知行为评估,外泌体的生物分布以及凋亡和神经炎症的组织学评估。外泌体在鼻内给药后一小时主要在嗅球中检测到,随后分配给纹状体和中脑。用外泌体处理的大鼠在侮辱后长达28天表现出认知功能的显着改善,并且在海马中显示出明显较少的凋亡细胞以及较高的神经元细胞存活。外泌体被小胶质细胞吸收,导致细胞毒性炎症标志物的表达降低。
摘要 目的 巨细胞动脉炎 (GCA) 和风湿性多肌痛 (PMR) 是影响 50 岁以上人群的重叠性自身炎症性疾病。这些疾病可用免疫抑制药物治疗,例如泼尼松龙、甲氨蝶呤、来氟米特和托珠单抗。在本研究中,我们评估了 SARS-CoV-2 疫苗在这些疾病中的免疫原性和安全性(基于体液免疫和细胞免疫)。方法 患者(n=45 名 GCA,n=33 名 PMR)两次到门诊就诊:接种疫苗前和第二剂(BNT162b2 或 ChAdOx1 疫苗)接种后 4 周。排除先前感染过 SARS-CoV-2 的患者。在接种疫苗前和接种疫苗后的样本中,评估抗 Spike 抗体浓度,并与年龄、性别和疫苗匹配的对照组(n=98)进行比较。此外,通过 IFN-γ ELIspot 测定评估了 SARS-CoV-2 刺突特异性 T 细胞的频率,并记录了副作用和疾病活动。结果与对照组相比,GCA/PMR 患者的抗体浓度没有降低。然而,线性回归分析显示,甲氨蝶呤和 >10 mg/天泼尼松龙的使用与 GCA/PMR 患者的抗体浓度降低显着相关。通过 ELIspot 测定评估,67% 的 GCA/PMR 患者存在细胞免疫的证据。使用 >10 mg/天泼尼松龙的患者细胞免疫力降低。重要的是,接种疫苗不会导致显着的副作用或疾病活动性变化。结论 SARS-CoV-2 疫苗接种对 GCA/PMR 患者是安全的,免疫原性与其他老年人相当。然而,使用甲氨蝶呤和特别是 >10 mg/天泼尼松龙的患者确实表现出较低的疫苗反应,这证实了其他自身炎症患者群体中的发现。因此,这些患者可能面临更高的(甚至可能是严重的)突破性 SARS-CoV-2 感染风险。
目前,神经干预、手术、药物和中枢神经系统 (CNS) 刺激是治疗中枢神经系统疾病的主要方法。这些方法用于克服血脑屏障 (BBB),但它们具有局限性,因此需要开发靶向递送方法。因此,最近的研究集中于时空直接和间接靶向递送方法,因为它们可以减少对非靶细胞的影响,从而最大限度地减少副作用并提高患者的生活质量。使治疗剂能够直接穿过 BBB 以促进递送至靶细胞的方法包括使用纳米药物(纳米颗粒和细胞外囊泡)和磁场介导递送。纳米颗粒根据其外壳组成分为有机和无机类型。细胞外囊泡由凋亡小体、微囊泡和外泌体组成。磁场介导的递送方法包括磁场介导的被动/主动辅助导航、趋磁细菌、磁共振导航和磁性纳米机器人——按其发展时间顺序排列。间接方法增加血脑屏障通透性,使治疗剂到达中枢神经系统,包括化学递送和机械递送(聚焦超声和激光治疗)。化学方法(化学渗透促进剂)包括甘露醇(一种普遍的血脑屏障通透剂)和其他化学物质——缓激肽和 1-O-戊基甘油——以解决甘露醇的局限性。聚焦超声有高强度和低强度两种。激光治疗包括三种类型:激光间质治疗、光动力治疗和光生物调节治疗。直接和间接方法的结合并不像单独使用那样常见,但代表了该领域进一步研究的领域。本综述旨在分析这些方法的优缺点,描述直接和间接递送的联合使用,并提供每种靶向递送方法的未来前景。我们得出结论,最有前途的方法是通过鼻腔到中枢神经系统输送混合纳米药物、有机、无机纳米粒子和外泌体的多种组合,然后通过光生物调节疗法或低强度聚焦超声进行预处理,以此作为将本综述与其他针对中枢神经系统输送的综述区分开来的策略;然而,还需要更多的研究来证明这种方法在更复杂的体内途径中的应用。
流感对儿童来说是一种令人不快的疾病,会引起发烧、极度疲劳、肌肉和关节疼痛、鼻塞、干咳和喉咙痛。大多数儿童在一周内康复,并可以回到托儿所或学校,但对一些儿童来说,流感可能会危及生命。
推荐引用推荐引用LAL,Rimisha和儿子Gabrielle,“对复合甘氨酸氯胺酮治疗耐药性抑郁症的护理人员培训”(2024年)。护理医生项目。101。https://scholarworks.seattleu.edu.edu/dnp-projects/101
尽管当前已批准的Covid-19疫苗具有显着的效率,但仍有几个机会继续开发针对SARS-COV-2和未来致命的呼吸道病毒。特别是,受限的疫苗接入和犹豫的免疫率有限。此外,当前的疫苗无法防止突破感染,导致病毒循环延长。为了改善通道,设计具有增强热稳定性的亚基疫苗,以消除对超冷链的需求。从该疫苗中排除传染性和遗传材料也可能有助于减少疫苗的犹豫。为了防止突破感染,探索了鼻内免疫以诱导粘膜免疫。由壳聚糖(CS)溶液中额外免疫助剂制成的受体结合结构域(RBD)多肽组成的原型疫苗诱导了1或2剂后实验室小鼠中的高水平的RBD特异性抗体。抗体反应耐用,高滴度在皮下疫苗接种后至少五个月持续存在。血清抗RBD抗体均包含IgG1和IgG2A同种型,这表明该疫苗诱导了混合的Th1/Th2反应。RBD疫苗接种无CS配方导致抗RBD反应最少。 比介绍剂量添加了CpG寡核苷酸在CS和RBD疫苗配方中比白介素12(IL-12)更有效地增加了抗体滴度。 在稳定性方面,疫苗在室温(21-22°C)或4°C下至少持续一个月时不会失去活性。RBD疫苗接种无CS配方导致抗RBD反应最少。比介绍剂量添加了CpG寡核苷酸在CS和RBD疫苗配方中比白介素12(IL-12)更有效地增加了抗体滴度。在稳定性方面,疫苗在室温(21-22°C)或4°C下至少持续一个月时不会失去活性。重要的是,生成的抗体与与SARS-COV-2变体相关的RBD突变体(包括Alpha,beta和Delta变体)的反应性,并抑制RBD与其同源受体血管紧张素转化酶2(ACE2)的结合。当鼻内递送时,疫苗会诱导RBD特异性粘膜IGA抗体,可防止上呼吸道中的突破性感染。总的来说,数据表明设计的疫苗平台具有多功能,适应性,并且能够克服当前Covid-19疫苗的关键限制。
如果您有想法,感受或计划来结束生活,那么紧急地进行交流很重要。 div>这些感觉可能会害怕或不知所措,但是您可以选择:•通知您的医生,卫生专业人员或紧急设备•立即去最近的医院•联系免费帮助线或将短信发送给024。•与亲密的人交谈(询问他是否认为自己的抑郁症恶化或是否担心自己的行为)
Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 15875-4413 Iran Mojtaba Bagherzadeh Department of Chemistry, Sharif University of Technology, Tehran, 11155-3516 Iran Yousef Fatahi Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451 Iran Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451 Iran Universal Scientific Education and Research Network (USERN), Tehran, 15875-4413 Iran Rassoul Dinarvand Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran德黑兰医学科学大学,14155-6451伊朗纳米技术研究中心,德黑兰医学科学大学药学学院,德黑兰,14155-6451伊朗穆罕默德雷扎·塔赫里里里,tahriri tahriri tahriri tahriri tahriri the beibee teebe teebee teekee tememe科学,马奎特大学,威斯康星州密尔沃基,美国53233,美国迈克尔·汉布林·韦尔曼摄影医学中心,马萨诸塞州,马萨诸塞州综合医院,美国波士顿,美国皮肤病学系,波士顿,波士顿,美国激光研究中心,美国北部工程学系,北部,北部。大学,马萨诸塞州波士顿,美国02115