4.2 剂量和给药剂量24个月以上的儿童和青少年0.2毫升(每个鼻孔给药0.1毫升)。对于之前未接种过季节性流感疫苗的儿童,应间隔至少 4 周后接种第二剂。由于安全问题,Fluenz 不应用于 24 个月以下的婴儿和儿童,因为这会导致这些人群的住院和喘息病例增加(见第 4.8 节)。给药方法 免疫必须通过鼻腔给药进行。请勿注射 Fluenz。 Fluenz 的剂量是分次注入两个鼻孔的。将一半剂量注入一个鼻孔后,立即将另一半剂量注入另一个鼻孔。患者在接种疫苗时可以正常呼吸——无需更积极地吸气或吸入。请参阅第 6.6 节的管理说明。 4.3 禁忌症
•抗抑郁药,例如三环抗抑郁药和单胺氧化酶抑制剂(MAOI) - 可能导致血压或高血压危机的严重增加•其他交感神经药物,例如充气,食欲抑制剂和半胺样的心理抗抑制剂,例如,血液中的增强症 - 渴望增加 -β受体阻滞剂,甲基多达 - 伪麻黄碱可能会拮抗某些类别的抗高督管的作用,并导致血压升高•尿酸化剂会增强消除伪麻黄碱的消除•尿碱碱降低消除伪甲肾上腺素。
摘要 大多数药物通常通过口服或静脉途径给药,以便快速起效、患者依从性更好、给药方便。然而,口服药物的生物利用度低和大脑暴露有限,对治疗神经退行性疾病和精神疾病构成了巨大挑战。因此,这种情况要求将药物靶向大脑。对于大脑靶向,需要考虑许多因素,即分子量、给药途径、药物的亲脂性和血脑屏障 (BBB)。这些因素限制了药物通过 BBB 进入脑组织。为了克服这些问题,鼻腔内给药是一种有希望的途径,它可以绕过 BBB,减少给药剂量,同时更好地让大脑接触药物。鼻腔途径已用于抗组胺药、局部止痛药和皮质类固醇的给药,旨在用于鼻过敏、鼻塞和鼻感染的局部给药。然而,最近也探索了通过这种途径进行全身给药。对于鼻腔至脑部药物输送,嗅觉和呼吸区被利用,这也使得较大的分子能够到达脑组织。这种输送系统通常依赖于 pH 或温度。某些神经系统疾病,如偏头痛、痴呆、帕金森病、癫痫和阿尔茨海默病,可以通过这种方式成功治疗。本综述试图强调鼻子的解剖结构、从鼻子到大脑的药物输送机制、输送系统配方中的关键因素、鼻腔配方以及鼻腔途径输送各种药物的应用。
通过合资企业,财团,特殊用途车辆和工业参与者的其他形式的合作,包括将最终用户与原材料供应商联系起来,从而通过合资企业,财团,特殊用途车和其他形式的合作来促进联合投资项目来重视链条。研究与创新(R&I)的合作,而联合项目的结果将为潜在的工业吸收和实施提供良好的基础。 挪威在R&I -Horizon 2020的欧盟框架计划中非常活跃,并在当前的地平线欧洲继续这样做。 将通过相互咨询和交换有关整个价值链中的相关政策和计划的信息,包括回收和废物管理,通过相互咨询和信息来促进高环境,社会和治理标准和实践的应用。 动员金融和投资工具来支持合伙企业下的投资项目,特别是通过投资欧盟,欧洲原材料联盟和欧洲电池联盟。 开发了原材料和电池领域高质量工作的必要技能。 这包括动员利益相关者和财政支持,以开发和部署适当的倡议以及诸如欧洲电池学院之类的现有倡议。 下一步研究与创新(R&I)的合作,而联合项目的结果将为潜在的工业吸收和实施提供良好的基础。挪威在R&I -Horizon 2020的欧盟框架计划中非常活跃,并在当前的地平线欧洲继续这样做。将通过相互咨询和交换有关整个价值链中的相关政策和计划的信息,包括回收和废物管理,通过相互咨询和信息来促进高环境,社会和治理标准和实践的应用。动员金融和投资工具来支持合伙企业下的投资项目,特别是通过投资欧盟,欧洲原材料联盟和欧洲电池联盟。开发了原材料和电池领域高质量工作的必要技能。这包括动员利益相关者和财政支持,以开发和部署适当的倡议以及诸如欧洲电池学院之类的现有倡议。下一步
摘要:尽管药物输送系统 (DDS) 在控制阿尔茨海默病、帕金森病、癫痫和癫痫发作等神经系统疾病方面取得了巨大进步,但仍需要创新的 DDS 来靶向大脑。将药物引导到大脑的最大障碍是血脑屏障 (BBB) 的存在,它阻碍了药物进入大脑。在过去的二十年中,出现了许多允许将药物运送到大脑的新方法。鼻内给药是这些方法之一,它可以以非侵入性方式绕过 BBB。脂质纳米胶囊 (LNC) 具有多种优势,可作为鼻脑药物输送的合适平台和新策略。它们可以通过快速、简单、无溶剂和可扩展的过程进行生产。因此,本综述描述了鼻脑给药机制和改善药物鼻腔吸收的几种方法,特别强调了基于脂质纳米胶囊的方法。它讨论了LNC的组成和制备方法、它们的优势及其在鼻脑给药中的应用。还讨论了鼻脑给药的未来前景。
摘要:缺血性中风引起的神经元细胞死亡导致脑功能的永久性损害。Fas介导的外在凋亡途径和细胞色素c介导的内在凋亡途径是导致缺血性中风神经元损伤的两种主要分子机制。在本研究中,我们使用了Fas阻断肽(FBP)与带正电荷的九聚精氨酸肽(9R)偶联,与带负电荷的靶向Bax的siRNA(FBP9R/siBax)形成复合物。该复合物专门用于将siRNA递送至表达Fas的缺血性脑细胞。该复合物能够靶向抑制Fas介导的外在凋亡途径和细胞色素c介导的内在凋亡途径。具体而言,FBP靶向Fas/Fas配体信号传导,而siBax靶向参与内在途径中线粒体破坏的Bax。 FBP9R 载体系统能够将功能性 siRNA 递送至表面表达 Fas 受体的缺氧细胞 — 这一发现已通过 qPCR 和共聚焦显微镜分析得到验证。通过鼻内 (IN) 向大脑中动脉闭塞 (MCAO) 缺血大鼠模型施用 FBP9R/siCy5,脑成像显示该复合物专门定位于表达 Fas 的梗塞区域,但并未定位在大脑的非梗塞区域。单次鼻内施用 FBP9R/siBax 可有效抑制 Fas 信号传导并阻止细胞色素 c 的释放,从而显著减少神经元细胞死亡。FBP9R/siBax 的靶向递送代表了治疗脑缺血的一种有前途的替代策略。
鼻喷雾泵作为整体式 DDC(MDR)的示例 鼻喷雾泵的工作原理是将液体制剂转化为喷雾,然后将药物喷射到鼻腔。通过工业加工和无菌灌装,它们被填充相应的(无菌)制剂,并因此融合成单个整体产品,该产品专用于给定组合。此外,鼻喷雾泵不可重复使用。所有这些特性都是 MDR 第 1(9) 条的主题,该条引导读者了解以下监管策略:在这种情况下,DDC 受药品框架管辖,而设备部件(鼻喷雾泵)需要满足 MDR 附件 I 中概述的一般安全和性能要求 (GSPR)。
1 确定针头大小和注射部位时,请运用专业判断。访问:https://www.immunize.org/catg.d/p3085.pdf。有关流感和流感疫苗接种的更多信息,请参阅 www.Michigan.gov/flu 、 www.cdc.gov/vaccines 或 www.cdc.gov/mmwr 。
。CC-BY-ND 4.0 国际许可证下提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2023 年 8 月 12 日发布。;https://doi.org/10.1101/2023.08.11.553035 doi:bioRxiv 预印本
摘要:全身接种 COVID-19 和流感疫苗的个体可能会继续支持病毒在上呼吸道中的复制和脱落,从而导致感染的传播。因此,需要一种增强呼吸道粘膜粘膜免疫的疫苗方案来预防大流行。鼻内/肺内 (IN) 疫苗可以通过促进感染部位的 IgA 分泌来促进粘膜免疫。在这里,我们证明,使用脂质体双 TLR4/7 佐剂 (Fos47) 佐剂的灭活甲型流感病毒的肌肉内 (IM) 启动-IN 加强方案可增强全身和局部/粘膜免疫。与使用 Fos47 (IM-Fos47) 的 IM 加强相比,使用 Fos47 (IN-Fos47) 的 IN 加强增强了上呼吸道和下呼吸道的抗原特异性 IgA 分泌。 IN-Fos47 诱导分泌的 IgA 也与多种流感病毒株有交叉反应。在用 Fos47 进行 IN 加强治疗后,肺中抗原特异性组织驻留记忆 T 细胞增加,表明 IN-Fos47 建立了组织驻留 T 细胞。此外,IN-Fos47 诱导的全身交叉反应 IgG 抗体滴度与 IM-Fos47 相当。在 IN 递送 Fos47 后未观察到局部或全身反应原性或不良反应。总之,这些结果表明使用 Fos47 的 IM/IN 方案是安全的,并且可提供局部和全身抗流感免疫反应。