飞机用燃气涡轮发动机的设计和开发是一个高度集成的过程,需要整合来自多个设计专业的大量人员的努力。如果设计过程定义明确且产品架构稳定,则该过程的结果将变得高度可预测和可重复。如果由于技术插入、客户要求或组件配置的整体性能变化而导致架构发生重大变化,则这种大型集成设计过程可能会变得更具挑战性。必须向参与产品开发的所有人准确无误地传达所有组件、系统和子系统的设计意图、要求和预期性能。普惠公司是一家大型燃气涡轮发动机设计公司,自 1925 年成立以来一直从事发动机业务。2008 年,普惠公司设计、制造并试飞了一台大型“齿轮传动涡扇”发动机,这是正在开发的新产品架构的演示,新产品系列中的第一台是 PWl 524G。这种新型发动机结构与更传统的涡扇发动机结构不同,它在风扇和驱动它的涡轮轴之间使用了减速齿轮组。早期对燃气涡轮发动机产品设计过程相互作用的研究工作是使用传统的高涵道比燃气涡轮发动机结构进行的,使用
压缩)、资源测量(卫星、地面)、产量计算、布局、安装(固定倾斜与跟踪器)、土木工程、风能技术、齿轮传动与直接驱动、叶片技术、输出控制、功率曲线和贝兹极限、资源评估(卫星、中尺度建模、气象桅杆、激光雷达)、风电场布局、产量计算、威布尔分布、土木工程(地基)先决条件:EE 712
“我们相信 [IBM 合作伙伴关系] 将成为加速器,”Volz 说道。“他们不会是我们在这一旅程中唯一使用的人,而且我们已经开始与大学、学院和其他公司合作。”两台齿轮传动涡扇发动机 - 用于空客 A320neo 的 PW1100G 和 PW1500G - 计划于今年晚些时候投入使用。三菱支线喷气机的 pW1200g 和伊尔库特 MC-21 的 PW1400G 计划于今年晚些时候完成首飞。分别用于巴西航空工业公司 E-190/195 E2 和 E-175 E2 的 PW1900G 和 PW1700G 现已开始组装。随着飞机项目的产量不断提高,每个发动机都将提供必须存储和分析的连续性能数据流。
“我们相信 [IBM 合作伙伴关系] 将成为加速器,”Volz 说道。“他们不会是我们在这一旅程中唯一使用的人,而且我们已经开始与大学、学院和其他公司合作。”两台齿轮传动涡扇发动机 - 用于空客 A320neo 的 PW1100G 和 PW1500G - 计划于今年晚些时候投入使用。三菱支线喷气机的 pW1200g 和伊尔库特 MC-21 的 PW1400G 计划于今年晚些时候完成首飞。分别用于巴西航空工业公司 E-190/195 E2 和 E-175 E2 的 PW1900G 和 PW1700G 现已开始组装。随着飞机项目的产量不断提高,每个发动机都将提供必须存储和分析的连续性能数据流。
他的整个职业生涯都在雷神技术公司工作,从柯林斯航空航天公司(前身为汉密尔顿标准公司)开始,一直到普惠公司。他在尖端军用和商用发动机控制系统开发方面拥有 35 年的经验,他的经验包括为 F-22、X-35 和 F-35 设计和开发数字电子发动机控制和诊断硬件;现场发动机和飞行测试支持;联合攻击战斗机推进系统和飞机控制系统的集成(2001 年科利尔奖);F-35 发动机控制软件的开发和验证,包括短距起飞和垂直着陆型号;以及齿轮传动涡扇产品系列发动机首次商业认证的控制系统产品负责人。此外,他自 2019 年起担任 SAE 电子发动机控制委员会成员。Ierardi 在康涅狄格州出生和长大。
他的整个职业生涯都在雷神技术公司工作,从柯林斯宇航(前身为汉密尔顿标准公司)开始,后来又在普惠公司工作。他在尖端军用和商用发动机控制系统开发方面拥有 35 年的经验,经验包括为 F-22、X-35 和 F-35 设计和开发数字电子发动机控制和诊断硬件;现场发动机和飞行测试支持;联合攻击战斗机推进系统和飞机控制系统的集成(2001 年科利尔奖);F-35 发动机控制软件的开发和验证,包括短距起飞和垂直着陆型号;以及齿轮传动涡扇产品系列发动机首次商业认证的控制系统产品负责人。此外,他自 2019 年起担任 SAE 电子发动机控制委员会成员。Ierardi 在康涅狄格州出生和长大。
燃气涡轮发动机零部件事业(民用发动机零部件)ㅣ韩华Aerospace通过航空发动机零部件事业,持续与主要发动机制造商及合作伙伴合作,确立了其全球航空发动机零部件第一供应商的地位。我们正在向主要发动机制造商及合作伙伴供应500多种发动机零部件。2015年,我们与P&W签订了下一代GTF(齿轮传动涡轮风扇)发动机的RSP合同。此外,我们于2018年进军越南,2019年进军美国,扩大生产基地,并正在构建全球运营体系。2021年,我们成功完成了劳斯莱斯先进Trent发动机核心零部件的新开发和首次交付,并且我们已完善了对质量和交付标准有严格要求的箱式零部件的供应。
齿轮噪声与振动——文献综述 Mats Åkerblom mats.akerblom@volvo.com Volvo Construction Equipment Components AB SE–631 85 瑞典埃斯基尔斯蒂纳 摘要 本文是对齿轮噪声与振动文献的综述。 它分为三个部分:“传动误差”、“动态模型”和“噪声与振动测量”。 传动误差 (TE) 被认为是齿轮噪声和振动的重要激励机制。 传动误差的定义是“输出齿轮的实际位置与齿轮传动完全共轭时其所处位置之间的差”。 由齿轮、轴、轴承和变速箱壳体组成的系统的动态模型对于理解和预测变速箱的动态行为很有用。 在通过实验研究齿轮噪声时,噪声和振动测量以及信号分析是重要的工具,因为齿轮会在特定频率下产生噪声,这与齿数和齿轮的转速有关。关键词:齿轮,噪声,振动,传动误差,动态模型。
无论是军用飞机还是民用飞机,提供足够的热管理都变得越来越具有挑战性。这是由于机载热负荷的量级显著增加,也是由于其性质的变化,例如存在更多低品位、高热通量热源,以及一些废热无法作为发动机废气的一部分排出。复合材料使用的增加提出了另一个需要解决的问题,因为这些材料在将废热从飞机转移到周围大气方面不如金属材料有效。这些热管理挑战非常严峻,以至于它们正在成为提高飞机性能和效率的主要障碍之一。在这篇评论中,我们将阐述这些挑战,以及文献中可能的解决方案和机会。在介绍来自周围环境的相关因素后,对挑战和机遇的讨论将通过对热管理系统中涉及的元素进行简单分类来指导。这些元素包括热源、热获取机制、热传输系统、向散热器的散热以及能量转换和存储。热源包括来自推进系统和机身系统的热源。热获取机制是从热源获取热能的手段。热传输系统包括冷却回路和热力学循环,以及相关组件和流体,它们将热量从热源移动到散热器,可能经过很长的距离。终端飞机散热器包括大气、燃料和飞机结构。除了讨论热管理系统的这些不同元素外,还详细讨论了飞机热管理研究中几个特别优先的主题。这些主题包括电力推进飞机、超高涵道比齿轮传动涡扇发动机和高功率机载军用系统的热管理;环境控制系统;动力和热管理系统;超音速运输机的热管理;以及热管理的新型建模和仿真过程和工具。