摘要最近在Kaiserslautern(德国)的Rheinland-Pfälzische大学(RPTU)上进行了大规模的CT系统Gulliver。该项目是由于德国各种大学与研究机构之间的竞争而于2019年启动的,旨在使用计算机断层扫描(CT)在最现实的负载条件下检查实际规模的建筑组件,这是材料测试中的习惯。CT测量旨在通过检测到负载施加点的最小裂纹,可为这些混凝土结构内的疲劳动力学提供新的见解,该混凝土结构长达6 m和1 m宽。系统的特殊设计和已安装的组件,打开了以前不可用的高能量CT应用程序的全新应用领域。特别值得注意的是该系统的龙门型操纵单元,到目前为止,其用途主要限于医学诊断,以及所使用的X射线组件,该组件在能源和分辨率方面开辟了全新的CT应用领域。但也是由此产生的大量数据的处理。系统中生成的10,000×10,000×2,000素代表了在测量后要进行的图像处理和评估的特殊挑战。在本出版物中,我们介绍了由德国研究基金会(DFG)资助的项目及其开发,其中包含在当前完成系统完成期间获得的测量结果以及开发的处理程序的状态。此外,还提供了与系统计划的未来测量活动,并解释了访问创新测试系统的可能性。
世界各地海港的集装箱运输量不断增加,而能源成本是总成本中的重要组成部分。耶夫勒港的集装箱码头 (CT) 是瑞典东海岸最大的集装箱码头,也不例外。随着运输量逐年增长,未来几年将开放一个新码头,在现有的两台岸边起重机 (STS) 基础上再增加三台和六台电动橡胶轮胎龙门起重机 (eRTG)。因此,加强能源效率措施,降低能源消耗和相关成本至关重要。因此,本报告旨在分析在耶夫勒港集装箱码头起重机中实施储能系统是否有助于通过在制动降低集装箱时回收能量以及削减电力峰值来降低电力成本。在对当前能源回收和存储方案进行文献综述后,本文提出了三种解决方案:两种方案适用于目前使用两台岸桥 (STS) 起重机的情况,第三种解决方案将在未来安装的三台 STS 起重机中实施,这也对码头中的任何其他起重机都有好处。根据所做的计算,这三种方案可以减少大量能源消耗,而且利润丰厚。然而,这些解决方案只是初步研究,还需要做更多的工作来确定确切的盈利能力和技术系统细节。这项工作是与耶夫勒港和集装箱码头运营公司 Yilport 合作完成的。
Uttarakhand提出的自动化车辆绿色塞斯收集系统(AVGCC)预计将在混合系统上工作,一方面,现有的收费广场将在V ol ve d中进行,其中一旦屏障的默认位置将一旦绿色CESS与其他适用的税收收集到其他状态,并从其他状态中收取了其他状态,将其从其他州注册,将其分别在其他状态下注册。将通过FASTAG和其他操作因素(技术,非技术,民用等)来促进该馆藏。收费广场本身将充当系统中的固定执法龙门。另一方面,还将开发一种集成的绿色及以下设备,通过RFID或其他基于卫星的设备的设备,我们州现有的ANPR摄像机网络也可以针对绿色CESS收集进行优化。拥有ANPR摄像机的车道将有预先的读者来识别北阿坎德邦的非注册车辆,并在进入州时扣除绿色污水库。付款机制应与现有的FastAg生态系统相似。在进入州时无法获得资金的情况下,进入北阿坎德邦的车辆将收取额外费用。还提出,根据通知No 21/IX-1/2024-106/2012,自动化的车辆绿色CESS收集系统(AVGCC)将适用于所有商业和非商业车辆,日期为2024年2月9日,将以各个州的所有边界范围内以phasted的方式执行。
对网站的描述并提出了网站1。6.96公顷(HA)应用地点位于Eastgate的西南部,斯坦霍普(Stanhope)以西约4公里处。西部约300m是一个孤立的建筑物,被称为Westernhopeburn,位于Brotherlee Brother。2。应用地点包括位于河磨损北部和南部的土地。该地点的大部分位于河磨损的北部,在A689的南部,可以从中获得该站点的通道。该地点的这一部分位于河磨损上方,包括前Eastgate水泥厂的西部(也称为Weardale水泥工厂)(工程)并进入。2002年关闭的作品在2005年被拆除,尚未重新开发。3。在河的南部佩戴申请地点,包括两个现有的地下水抽象井,一个位于路德威尔农舍(Ludwell Farm House)的东部(称为井眼1(BH1)),并使用该井,另一个在西部(称为Borehole 2(BH2))。这两个地点都位于农业放牧场中,这些田地将向南倾斜向南驶向河磨损。BH1和BH2站点位于公路C74的北部,从中获得通道。这条路与河磨损南部的A689平行,并在东部的Stanhope和西部的Daddry Shield加入A689。申请站点还包括沿公路C74的BH1和BH2之间的地下管道。此外,使用以前将Eastgate采石场与以前的Weardale Cement Works现场联系起来的前传送带桥桥对穿过河的管道龙门,并将其连接到申请地点,并将将河水北部和南部的区域连接起来。
DBIC - 第 1A 阶段概述:以下指南基于 EHS 为实验室和研究机构提供的信息,旨在帮助确定和实施经批准的工作区域和设备 COVID-19 消毒方法。根据 CDC 指南,达特茅斯脑成像中心 (DBIC) 的研究人员至少应在扫描仪套件中每次扫描开始和结束时执行消毒方案,但不少于每两小时一次。扫描套件内所需的清洁和消毒是研究人员的责任,应按照 CDC 建议执行,如下所述。工作班次期间可能被多人接触的设备和表面必须每两小时消毒一次。高接触位置和设备:以下是 DBIC 中需要消毒的、处理和接触频率高的位置和设备。 o 台面、扫描仪控制台 o 门把手、橱柜把手 o 扫描仪龙门架上的扫描仪台控件 o 内部和外部线圈、电缆、按钮盒、紧急挤压球 o 幻影 o 灯开关和面板 o 电话、计算机键盘和计算机鼠标 o 控制台区域和受试者等候区的椅子扶手 o 更衣室的门把手、灯开关和抽屉 o 钢笔、记号笔、铅笔、订书机、胶带分配器 o 复印机控件 o 清洁产品容器 o 系统开/关按钮 o MRI 对讲系统 o MRI 套件的门铃 批准的消毒剂: DBIC 将提供经 EPA 认证可有效对抗 COVID-19 冠状病毒的消毒剂。 Terry Sackett 和 Courtney Rogers 将负责验证消毒剂是否在 EPA 注册清单上。
需要在硼中子捕获(BNCT)中的治疗计划与其他放射性疗法和专用方法不同。患者内部的核相互作用必须对剂量计算进行建模。由于缺乏更精确的数据,患者组织是根据通常从ICRU报告中获取的平均元素组成来定义的[1,2]。10 B的浓度相对于基于已公布数据的血液硼浓度估计。通常只能精确地定义血液的浓度。In BNCT treatment planning, four dose components are calculated: 1) high-LET boron dose due to the alpha particle and 7 Li nucleus released in 10 B( n , ) capture reaction at thermal neutron energies, 2) intermediate-LET thermal neutron dose primarily due to the protons (E=0.54 MeV) released in nitrogen neutron capture reaction 14 N( n , p ) 14 C in tissue, 3)中间 - 让快速中子剂量主要是由于1 h(n,n')1 h反应中释放的后方质子和4)在氢中子中子捕获反应中从组织中1 h(n,)2 h(n,= 2.2 meV)中的低LET光子剂量在组织中,通常在中子束中存在低γ污染物。到目前为止,只有蒙特卡洛方法已成功地用作剂量计算工具。通常使用Funlence-to-Kerma转换因子来定义剂量(kerma近似)。另一种选择是计算每个中子和光子相互作用或分别通过每个二次粒子沉积的能量。BNCT不存在龙门群体系统。现有的BNCT中子源具有固定的光束,这意味着必须将患者旋转到最佳治疗方向。旨在定义与光子放射疗法临床效果相对应的单位的患者剂量,每个剂量成分乘以相对生物学有效性(RBE)因子(传统方法)或生物剂量功能,例如光子等效剂量剂量模型[3,4]或微氨基化剂量学模型[5]。治疗计划图像应在计划方向上最佳拍摄。在本文中,审查了当前用于满足BNCT剂量计算和治疗计划独特需求的方法。