理由。在过去的几年里,神经网络已经学会了生成图像、创作音乐以及编写小说和科学文本。神经网络在不久的将来真的会取代艺术家吗?这种分析将有助于回答所提出的问题,并从定性上理解用机器计算取代创作过程的问题。目标是确定人工智能在当今艺术行业中的作用并分析其未来发展的可能性。方法。首先,值得分析一下神经网络的出现历史及其发展趋势。创建人工智能的科学设想最早出现于20世纪中期。早在1943年,沃尔特·皮茨(Walter Pitts)和沃伦·麦卡洛克(Warren McCulloch)就开发了神经元的数学模型。后来,在1960年,Frank Rosenblatt提出了感知器(Perceptron)的想法,这是一种基于对各种数据的分析而让计算机进行学习的模型。弗兰克·罗森布拉特 (Frank Rosenblatt) 发明了 Mark 1 电子机器,这是第一台神经计算机。后来,人们发明了更有效的“反向传播方法”,加速了神经网络的训练,并显著扩展了其能力。如今,神经网络不仅能够执行与特定动作序列相关的各种明确任务,而且还能够完全“模拟”创作过程,分析全球网络上数十万件艺术家的作品[1]。例如,2022 年《Cosmopolitan》杂志的封面完全由 DALL-E 2 神经网络创建(图 1)。现在与神经网络相关的重要问题之一是版权问题。在俄罗斯联邦,目前的立法还没有对此类问题进行规范,但俄罗斯的立法程序已经在考虑有关神经网络开发和使用问题的类似方面[3]。美国最近就神经网络作品的版权所有权展开了全面的法律诉讼。 Z.A. 写过这篇文章。 Dyatlov 在他的文章“作品版权,
主要关键词