摘要。人工智能 (AI) 和机器学习 (ML) 的最新进展有望改善政府。鉴于人工智能应用的先进功能,至关重要的是,这些应用必须使用标准的操作程序、明确的认知标准嵌入其中,并按照社会的规范期望行事。随后,多个领域的学者开始概念化人工智能系统可能采取的不同形式,强调其潜在的好处和缺陷。然而,文献仍然支离破碎,公共管理和政治学等社会科学学科的研究人员以及人工智能、机器学习和机器人技术等快速发展的领域的研究人员都在相对孤立地开发概念。尽管有人呼吁将新兴的政府人工智能研究正式化,但缺乏一个平衡的描述,以涵盖理解将人工智能嵌入公共部门环境的后果所需的全部理论观点。在这里,我们使用概念图来识别人工智能多学科研究中使用的 107 个不同术语,从而统一社会和技术学科的努力。我们归纳地将它们分为三个不同的语义组,分别标记为 (a) 操作、(b) 认知和 (c) 规范领域。然后,我们在此映射练习的结果基础上,提出三个新的多方面概念,以综合、前瞻性的方式研究基于人工智能的政府系统 (AI-GOV),我们称之为 (1) 操作适应性、(2) 认知完备性和 (3) 规范显著性。最后,我们将这些概念用作 AI-GOV 概念类型学的维度,并将每个概念与新兴的人工智能技术测量标准相连接,以鼓励操作化,促进跨学科对话,并激发那些旨在用人工智能重塑公共管理的人之间的辩论。
主要关键词