BERT:一种多功能的 AI 工具,可自动执行 TBM 分类法分类 从历史上看,计算机很难“理解”文本形式的语言。虽然这些机器可以非常有效地收集、存储和读取文本输入,但它们缺乏基本的语言背景或意图。幸运的是,自然语言处理 (NLP) 和自然语言理解 (NLU) 可以帮助完成这项任务。这种语言学、统计学、机器学习和人工智能的结合过程不仅可以帮助计算机“理解”人类语言,还可以破译和解释特定文本的意图。 BERT 体现了 NLP 和 NLU 的最新进展,它由 Google 开发并向公众开源。 BERT 依赖于 Transformer 模型架构 [3] 的编码器部分,该架构也是由 Google 开发的。它使用自注意力机制来捕捉单词的语义。该机制使用优雅而简单的线性代数运算来建立单词(或在 BERT 上下文中为标记)之间具有不同权重的关系。权重决定了标记之间的接近度并捕获序列的上下文。
主要关键词