Loading...
机构名称:
¥ 6.0

随着人工智能的不断进步,应用程序希望 AI 能够像人类一样出色地执行任务,甚至比人类更好。测试理论应用的一个好方法是通过简单到复杂的游戏。过去几年,人工智能模型已用于实时战略游戏,但它们的实现仍处于初级阶段,还有许多工作要做。研究问题是蒙特卡罗(当今世界一种著名的算法)如何得到改进,无论是在一般情况下还是在实时战略游戏的背景下。实施实验设计是主要的研究方法。之所以选择这种技术,是因为它提供了与未探索的想法进行对比的最清晰的框架。研究问题围绕改进蒙特卡罗方法展开,特别是在 MicroRTS(一种流行的 AI 算法测试环境)中。由于研究的目标是增强用于战略游戏的蒙特卡罗树搜索 (MCTS) 算法,因此将对传统的 MCTS 实现(MCTS Greedy 和 MCTS UCB)和独特的建议 MCTS(MCTS UCB+)进行比较。比较分析是通过在 RTS 环境中对每种算法的性能进行基准测试,并根据几个标准比较结果来完成的。研究发现,通过改变采样和选择方法以及对游戏状态的理解,新算法 MCTS UCB+ 能够在 MicroRTS 的部分可观察游戏模式下超越其前辈。

人工智能和实时战略游戏

人工智能和实时战略游戏PDF文件第1页

人工智能和实时战略游戏PDF文件第2页

人工智能和实时战略游戏PDF文件第3页

人工智能和实时战略游戏PDF文件第4页

人工智能和实时战略游戏PDF文件第5页