摘要。光伏发电系统与可变需求的整合可能会导致配电网不稳定,这是由于功率波动和反应物增加造成的,尤其是在工业部门。为此,光伏装置配备了本地存储系统,最终吸收功率波动并提高安装性能。然而,在此过程中,储能可以提供的其他功能被忽略了。因此,本研究提供了一种多模式能源监控和管理模型,该模型通过储能系统的最佳运行实现电压调节、频率调节和无功功率补偿。为此,开发了一种平滑控制算法,该算法与公共连接点的电网参数相互作用,还允许根据工业需求曲线补偿无功功率。该策略使用能源消耗前的历史需求数据的长短期记忆神经网络,RMSE 相对较低,为 1.2e-09。结果之前已在开发环境中使用实时 OPAL-RT 模拟器进行了验证,并在昆卡大学的电气微电网实验室进行了测试。这种配置允许建立需求预测模型,从而改善日常能源生产的监督、自动化和分析。提供并分析了一系列结果,表明新工具可以利用多模式功能,实现最佳电压调节,并通过将总谐波失真 THD (V) 和 THD (I) 指数分别降低 0.5% 和 2% 来提高电能质量。
主要关键词