Loading...
机构名称:
¥ 1.0

代谢通量及其控制机制是细胞代谢的基础,为研究生物系统和生物技术应用提供了见解。然而,对微生物细胞工厂中生化反应的控制,尤其是在系统层面的控制,定量和预测性的理解是有限的。在这项工作中,我们提出了 ARCTICA,这是一个计算框架,它将基于约束的建模与机器学习工具相结合以应对这一挑战。使用模型蓝藻 Synechocystis sp. PCC 6803 作为底盘,我们证明 ARCTICA 可以有效模拟全球规模的代谢通量控制。主要发现包括:(i) 光合生物生产主要受卡尔文-本森-巴沙姆 (CBB) 循环中的酶控制,而不是受参与最终产物生物合成的酶控制;(ii) CBB 循环的催化能力限制了光合活性和下游途径;(iii) 核酮糖-1,5-双磷酸羧化酶/加氧酶 (RuBisCO) 是 CBB 循环中的主要限制步骤,但并非最主要的限制步骤。预测的代谢反应与之前的实验观察结果在质量上一致,验证了我们的建模方法。ARCTICA 是了解细胞生理学和预测基因组规模代谢网络中限速步骤的重要管道,从而为蓝藻生物工程提供指导。

代谢工程

代谢工程PDF文件第1页

代谢工程PDF文件第2页

代谢工程PDF文件第3页

代谢工程PDF文件第4页

代谢工程PDF文件第5页

相关文件推荐

2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2016 年
¥37.0
2018 年
¥34.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥4.0
2024 年
¥6.0
2023 年
¥1.0
2012 年
¥81.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥3.0
2024 年
¥1.0
2023 年
¥1.0