摘要 — 准确预测元件的剩余使用寿命 (RUL) 是电子电路中的主要关注点。基于 RUL 的健康诊断在确定设备故障时间方面发挥着重要作用,可作为工业应用中的预警。本文提出了一种基于长短期记忆 (LSTM) 的回归模型,利用设备最基本的提取电气特征来预测环形振荡器 (RO) 电路的 RUL。LSTM 网络能够捕获时间序列数据中的时间依赖性并消除传统循环神经网络 (RNN) 中遇到的梯度消失问题。从 Cadence 模拟中,利用 22 nm CMOS 技术库,已经证明 RO 频率退化主要取决于三个主要因素,包括工作温度、电压以及最重要的设备老化参数。结果表明,13 和 21 阶段的 RUL 预测结果中超过 90% 的案例受电源电压变化限制,变化范围为 0.7 V 至 0.9 V,预测偏差最小为 2 天至 6 天。关键词:老化、剩余使用寿命、机器学习、在线预测、可靠性
主要关键词