Loading...
机构名称:
¥ 2.0

我们考虑一种使用量子比特的量子计算模型,其中可以测量给定的一对量子态是处于单重态(总自旋为 0)还是三重态(总自旋为 1)。其物理动机是,只要哈密顿量中的所有项都是 SU (2) 不变的,我们就可以以一种不会泄露其他信息的方式进行这些测量。我们推测这个模型等价于 BQP。为了实现这一目标,我们证明了:(1)如果补充单量子比特 X 和 Z 门,该模型能够以多对数开销进行通用量子计算。(2)在没有任何额外门的情况下,它至少与 Jordan 的弱“置换量子计算”模型一样强大 [ 14 , 18 ]。(3)通过后选择,该模型等价于 PostBQP。不完美的物理门是构建可扩展量子计算机的主要挑战。克服这一挑战的一种可能方法是使用纠错码从低保真度物理门构建高保真度逻辑门 [10]。另一种方法是使用拓扑有序状态来存储和操纵量子信息,直接获得良好的逻辑门 [17]。在这里,我们提出了第三种方法,通过物理哈密顿量的对称性保护操作。特别地,我们考虑在量子自旋中编码的量子位,并且我们假设哈密顿量和任何噪声项都遵循同时作用于所有量子位的 SU (2) 对称性。我们需要快速介绍一下 SU (2) 的表示理论。SU (2) 的不可约表示由一个量 S ∈{0, 1 / 2, 1, 3 / 2, ... } 来索引,称为自旋。自旋 S 的表示维数为 2 S + 1 。自旋 1 / 2 的表示维数为

对称保护的量子计算

对称保护的量子计算PDF文件第1页

对称保护的量子计算PDF文件第2页

对称保护的量子计算PDF文件第3页

对称保护的量子计算PDF文件第4页

对称保护的量子计算PDF文件第5页

相关文件推荐

2020 年
¥3.0
2023 年
¥1.0
2024 年
¥4.0
2020 年
¥2.0
2020 年
¥5.0
2021 年
¥2.0
2022 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥5.0
2023 年
¥1.0
2021 年
¥1.0
2020 年
¥3.0
2022 年
¥2.0
2022 年
¥3.0
2021 年
¥9.0
2023 年
¥1.0
2022 年
¥8.0
2023 年
¥3.0
2023 年
¥1.0
2023 年
¥1.0
2023 年
¥3.0
2023 年
¥2.0
2023 年
¥1.0
2022 年
¥3.0
2024 年
¥6.0
2023 年
¥3.0
2023 年
¥1.0
2024 年
¥4.0
2023 年
¥1.0