摘要动物神经系统在处理感官输入方面非常高效。神经形态计算范式旨在硬件实现神经网络计算,以支持构建大脑启发式计算系统的新解决方案。在这里,我们从果蝇幼虫神经系统中的感官处理中获得灵感。由于其计算资源非常有限,只有不到 200 个神经元和不到 1,000 个突触,幼虫嗅觉通路采用基本计算将外围广泛调节的受体输入转换为中央大脑中节能的稀疏代码。我们展示了这种方法如何让我们在脉冲神经网络中实现稀疏编码和刺激模式的可分离性提高,并通过软件模拟和混合信号实时神经形态硬件上的硬件仿真进行了验证。我们验证了反馈抑制是支持整个神经元群体中空间域稀疏性的中心主题,而脉冲频率适应和反馈抑制的组合决定了时间域中的稀疏性。我们的实验表明,这种小型的、生物现实的神经网络在神经形态硬件上有效地实现,能够实现全时间分辨率下感官输入的并行处理和有效编码。
主要关键词