任何科学学科面临的主要挑战之一就是确定某些观察到的相关性背后的原因。疫苗对疾病有效吗?提高工资会鼓励消费吗?大气中二氧化碳的增加是导致地球平均温度升高的原因吗?这些问题以及类似问题都可以用因果推理 (CI) 的工具来表述和分析 [1]。然而,尽管因果推理具有广泛的相关性,但当前涉及潜变量的 CI 算法通常无法分析具有少量节点的结构 [2-6]。鉴于贝尔定理 [8] 可以从概率分布与给定因果结构的兼容性来理解 [9, 10],量子非局域性领域 [7] 近年来将注意力集中在因果关系上。这一观点推动了量子关联的研究超越传统的二分场景(例如,参见 [ 11 – 15 ] 和评论 [ 16 ]),并推动了表征在这种因果场景中产生的量子和经典概率分布的技术的发展 [ 17 – 21 ]。一个特别成功的工具是膨胀方法 [ 22 – 24 ],它由一系列越来越严格的必要条件组成,可以通过线性或半定规划进行测试。尽管膨胀技术在量子非局域性领域内外都有广泛的适用性,但其可用的实现通常仅限于
主要关键词