Loading...
机构名称:
¥ 2.0

随机抽样是现代算法,统计和Ma-Chine学习中的基本原始性,用作获取数据的较小但“代表性”子集的通用方法。在这项工作中,我们研究了在流式设置中对自适应对手攻击的鲁棒性:对手将宇宙U的一系列元素传递到采样算法(例如Bernoulli采样或储层采样),并以“构成非常无用的”效果'nesprestation's repressented'nesperate'nesprestanter''对手是完全自适应的,因为它知道沿流的任何给定点的样本的确切内容,并且可以以在线方式选择下一个相应地发送的元素。静态设置中的众所周知的结果表明,如果提前选择完整的流(非适应性),则大小ω(d /ε2)的随机样本是具有良好概率的完整数据的εApproximation,其中D是d是基础设置系统的VC-dimension(u,r)。此样本量屈服于适应性对手的鲁棒性?简单的答案是负面的:我们演示了一个设定的系统,其中恒定样本大小(对应于1个的VC维度为1)在静态设置中,但是自适应对手可以使用简单的和易于实现的攻击。但是,此攻击是“仅理论上的”,要求设定的系统大小至(本质上)在流长中指数。这几乎与攻击施加的约束相匹配。这不是一个巧合:我们表明,为了使采样算法与自适应对手进行鲁棒性,所需的修改仅是在样本大小中替换VC差异项D中的VC差异项D,并用基数期限log | r |替换。 。也就是说,具有样本尺寸ω(log | r | /ε2)的Bernoulli和储层采样算法,即使在存在自适应对手的情况下,也有良好的可能性输出流的代表性样本。

采样的对抗性鲁棒性

采样的对抗性鲁棒性PDF文件第1页

采样的对抗性鲁棒性PDF文件第2页

采样的对抗性鲁棒性PDF文件第3页

采样的对抗性鲁棒性PDF文件第4页

采样的对抗性鲁棒性PDF文件第5页