过去有自己的磁场,其小尺寸导致核心的能量损失,从而导致核心冷却和产生磁场的能力(3)。美国物理学家兼退休的首席科学家詹姆斯·劳尔·格林(James Lauer Green)提议在拉格朗日(Lagrange)1点(L1)(4)上产生磁场。Lagrange点是在空间中的sta tionary位置,在该空间中,在与更大的物体相关的旋转框架内,在小体上作用的引力作用在小体内。在他的学术论文中,绿色提议将人工磁层屏蔽放在L1上,以阻止太阳风,从而始终侵蚀火星大气(4)。他建议这样做可以使痕量气体的积累,从而逐渐形成火星上的微弱气氛。随着时间的流逝,温室气体的存在将有助于使大气变暖,从而使被困的水解冻,然后将其转化为水蒸气。此过程有可能补充火星海洋的大约七分之一(4)。我们的研究重点是通过使用太阳能帆,太阳能电池板和超级电管磁体来进一步发展这一想法,以保护火星免受太阳风的影响并使火星可居住(图1)。为了生成人造磁场,超导磁体提供了有希望的解决方案。它们经常用于医院,用于磁共振成像和诸如核磁共振光谱ETERS,融合反应堆和粒子加速器等科学仪器中(5)。在这些条件下,超导磁体的绕组具有零电阻。这些磁铁表现出降低的电阻和提高的效率,从而可以产生较大的磁场,并具有较低的能量消耗。超导磁体表现出零电阻,并且没有产生热量,从而使它们保持高电流强度(6)。维持零电阻的主要要求是将温度降低到极低的值,这是通过将电气棒网浸入液体氦气中来实现的(6)。为了最大程度地减少气体蒸发,将浓度浸入另一个装有液氮的露水容器中。即使CIR CUIT紧密关闭,提供给电路的电流也会持续到所需的时间。超导磁体非常适合在太空中使用,因为它们消耗的功率很少,并且超导体可以在当前的登角机构中运行,而后者比传统导体高得多(7)。要运输和部署这些磁铁,太阳帆可能是理想的解决方案。太阳帆利用太阳发出的光的压力推动了航天器。太阳能航行消除了燃料的需求,因为它们依靠光子进行运动(8)。为了向磁铁提供能量,可以使用太阳能电池板。当太阳照在太阳能电池板上时,来自太阳的能量
主要关键词